Курс Николая Богачева «Геометрия, арифметика и динамика дискретных групп»

9 февраля - 18 мая, 2021
Онлайн курс
На русском языке

Онлайн курс Николая Богачева "Геометрия, арифметика и динамика дискретных групп"

Николай Богачев (МФТИ, Сколтех) прочтет курс "Геометрия, арифметика и динамика дискретных групп" в весеннем семестре 2021 года. Курс на русском языке будет проходить онлайн на платформе Zoom, каждый вторник в 17.30. Расписание предварительное, возможны изменения (они будут отражаться на этой странице).

К участию приглашаются все желающие, курс рассчитан на студентов, аспирантов и исследователей.

Курс пройдет на платформе Zoom
Meeting ID: 986 2594 4049 (ссылка)
Пароль: порядок группы $S_6$

You can also write to Alexander Polyanskii (alexander.polyanskii@yandex.ru) or to Maksim Zhukovskii (zhukmax@gmail.com) if you want to be added to mailing list.

Аннотация:

Современные исследования в области геометрии, топологии и дискретных групп часто сочетают в себе арифметические, геометрические и динамические методы. Курс в основном посвящен гиперболическим мноогообразиям и орбифолдам, но также будут обсуждаться и общие вопросы про дискретные подгруппы групп Ли и арифметические группы. Особый интерес представляет теория Винберга гиперболических групп отражений, доставляющая очень интересные примеры и методы их использования в различных целях. В конце курса предполагается обзор недавних результатов, опубликованных или принятых к печати в ведущих математических журналах мира, а также обсуждение открытых проблем и гипотез, как недавно поставленных, так и с 30-40 летней историей.

Страница курса на сайте Николая Богачева: nvbogachev.netlify.app/teaching/gaddg21s/. На ней конспекты и видео записи лекций появляются раньше.

Программа лекций:

9 февраля, вторник
17.30 (MSK)

Лекция №1

Введение (общая картина: что изучаем?). Элементы общей и алгебраической топологии: топологические многообразия и конструкции, гомотопии, фундаментальные группы, накрытия.

Конспект лекции

Видеозапись

16 февраля, вторник
17.30 (MSK)

Лекция №2

Риманова геометрия: гладкие многообразия, группы Ли, римановы многообразия, симметрические однородные пространства, пространства постоянной секционной кривизны, пространство Лобачевского $H^n$.

Конспект лекции

Видеозапись

2 марта, вторник
17.30 (MSK)

Лекция №3

Еще немного римановой геометрии (изометричные отображения римановых многообразий, вполне геодезические подмногообразия, римановы многообразия с краем) и геометрии Лобачевского (метрики и метрические тензоры в разных моделях, геодезические, компактификация, изометрии и классификация изометрий: эллиптические, параболические и локсодромические/гиперболические движения)

Конспект лекции

Видеозапись

9 марта, вторник
17.30 (MSK)

Лекция №4

Действия групп гомеоморфизмами, элементы теории групп, геометрическая теория групп, дискретные группы преобразований, дискретные группы движений и дискретные подгруппы групп Ли: вполне разрывные действия групп, дискретные подгруппы топологических групп, конечно порожденные и конечно представимые группы, свободность от кручения и лемма Сельберга (без док-ва), свободные группы, разрешимые группы, альтернатива Титса (без док-ва), пинг-понг лемма (без док-ва), мера Хаара на локально компактной группе, решетки в группах Ли (дискретные подгруппы конечного кообъема по мере Хаара), фундаментальная область для дискретной группы преобразований и примеры.

Конспект лекции

Видеозапись

16 марта, вторник
17.30 (MSK)

Лекция №5

Мера Хаара на классических группах GL(n,R), группа строго верхнетреугольных матриц, PSL(2,R), и т.д. Решетки (дискретные подгруппы конечного кообъема по мере Хаара) в группах Ли и простейшие свойства решеток. Конечность объема фундаментальной области для решетки и компактность фундаментальной области для равномерной решетки. Область Дирихле. Фундаментальная область как обобщенный выпуклый многогранник. Равенство объемов фундаментальных областей.

Конспект лекции

Видеозапись

23 марта, вторник
17.30 (MSK)

Лекция №6

Классификация изометрий пространства Лобачевского: эллиптические, параболические и локсодромические движения. Предельное множество (the limit set) и его свойства. Каспы фундаментальных многогранников. Каспы поверхностей и многообразий. Идея доказательства пинг-понг леммы и группы Шоттки. Метод Пуанкаре.

Конспект лекции

Видеозапись

30 марта, вторник
17.30 (MSK)

Лекция №7

Гиперболические поверхности - примеры. Геометризация поверхностей. Модулярная группа Клейна. Группы отражений. Эллиптические и параболические группы отражений. Теория Винберга гиперболических групп отражений. Многогранники Кокстера и схемы Кокстера. Критерии конечности объема и компактности для гиперболических многогранников Кокстера. Отсутсвие компактных многогранников Кокстера пространствах Лобачевского высокой размерности. Дискретные группы евклидовых изометрий. Теорема Бибербаха. Аффинные плоские многообразия и их фундаментальные группы. Гипотеза Ауслендера. Наличие свободных подгрупп в решетках в PO(n,1).

Конспект лекции

Видеозапись

6 апреля, вторник
17.30 (MSK)

Лекция №8

Основные концепции геометрической теории групп: графы Кэли, квази-изометрии, фундаментальная лемма геометрической теории групп (лемма Шварца – Милнора), гиперболичность по Громову. Деформации поверхностей: прямоугольные 6-угольники, гиперболические штаны, pants decomposition of surfaces, пространства модулей, пространства Тайхмюллера, mapping class groups. Формулировки теорем жесткости - Мостов, Маргулис, Прасад.

Конспект лекции

Видеозапись

13 апреля, вторник
17.30 (MSK)

Лекция №9

Доказательство теоремы жесткости Мостова, часть 1: поднятие гладкой гомотопии до псевдоизометрии, продолжение до гомеоморфизма шара, квази-конформность и дифференцируемость на границе.

Конспект лекции

Видеозапись

20 апреля, вторник
17.30 (MSK)

Лекция №10

Доказательство теоремы жесткости Мостова, часть 2: динамика и эргодическая теория, эргодичность геодезических потоков на гиперболических многообразиях, Howe — Moore theorem, эргодичность действия группы, конформность на границе = изометричность.
27 апреля, вторник
17.30 (MSK)

Лекция №11

Теория чисел: теория Галуа, квадратичные формы, кватернионные алгебры. Алгебраические k-группы: k-группы, простые и полупростые k-группы, максимальные k-торы, классификация Титса полупростых групп. Арифметические и квазиарифметические группы. Теоремы Маргулиса. Три типа арифметических решеток в группе Ли PO(n,1).
4 мая, вторник
17.30 (MSK)

Лекция №12

Теория Винберга гиперболических групп отражений. Критерий арифметичности. Конечность числа и классификация максимальных арифметических групп отражений в пространствах Лобачевского: известные результаты и открытые проблемы.
11 мая, вторник
17.30 (MSK)

Лекция №13

Неарифметические многообразия Громова и Пятецкого-Шапиро. Доказательство их неквазиарифметичности. Квазиарифметические многообразия Агола, Белолипецкого, Томсона. Неарифметические группы отражений типа Громова — Пятецкого-Шапиро (Винберг, 2014).
18 мая, вторник
17.30 (MSK)

Лекция №14

Вполне геодезические подпространства гиперболических орбифолдов. Идея доказательства недавно полученного (2018-2021) критерия арифметичности: гиперболический орбифолд арифметичен тогда и только тогда, когда он содержит бесконечно много вполне геодезических подорбифолдов.

Video recording of the course:

Язык курса - русский. Курс рассчитан на студентов, аспирантов и исследователей.