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Parallelohedra

Definition
Convex d-dimensional polytope P is called a parallelohedron if
Rd can be (face-to-face) tiled into parallel copies of P.

Two types of two-dimensional parallelohedra
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Three-dimensional parallelohedra

In 1885 Russian crystallographer Fedorov listed all types of
three-dimensional parallelohedra.

Parallelepiped and hexagonal prism with centrally symmetric
base.
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Three-dimensional parallelohedra

In 1885 Russian crystallographer Fedorov listed all types of
three-dimensional parallelohedra.

Rhombic dodecahedron, elongated dodecahedron, and
truncated octahedron

3/49



Introduction Voronoi’s conjecture Hilbert’s 18th Reduction theory R5 Canonical Scaling R5 : dual cells

Tiling by elongated dodecahedra (from Wikipedia)
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Minkowski-Venkov conditions

Theorem (Minkowski, 1897; Venkov, 1954; and McMullen,
1980)
P is a d-dimensional parallelohedron iff it satisfies the following
conditions:

1. P is centrally symmetric;
2. Any facet of P is centrally symmetric;
3. Projection of P along any its (d− 2)-dimensional face is

parallelogram or centrally symmetric hexagon.

Particularly, if P tiles Rd in a non-face-to-face way, then it
satisfies Minlowski-Venkov conditions, and hence tiles Rd in a
face-to-face way as well.
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Parallelohedra to Lattices

I Let P be a parallelohedron, i.e. centrally symmetric convex
polytope with symmetric facets and 4- or 6-belts;

I Let TP be the unique face-to-face tiling of Rd into parallel
copies of P. Then the centers of the tiles form a lattice ΛP.
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Lattices to Paralleohedra
I Let Λ be an arbitrary d-dimensional lattice and let O be a

point of Λ.

I We construct the polytope consisting of points that are
closer to O than to any other point of Λ (the
Dirichlet-Voronoi polytope of Λ).

I Then DVΛ is a parallelohedron and the points of Λ are
centers of the corresponding tiles.

O
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The Voronoi conjecture

Conjecture (Voronoi, 1909)
Every parallelohedron is affinely equivalent to the Dirichlet-Voronoi
polytope of some lattice Λ.

−→
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Voronoi conjecture in R2

I Each parallelogram can be transformed into some
rectangle and all rectangles are Voronoi polygons.

I Each centrally-symmetric hexagon can be transformed into
some hexagon inscribed in a circle. This transformation is
unique modulo isometry and/or homothety. Similarly, all
centrally-symmetric hexagons inscribed in circles are
Voronoi polygons.
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The Voronoi conjecture: small dimensions
I R2: folklore.
I R3: kind of folklore. All three-dimensional parallelohedra

are known due to Fedorov, and then one can check that
they satisfy the Voronoi conjecture.

Theorem (Delone, 1929)
The Voronoi conjecture is true in R4.

Classification: there are 52 four-dimensional parallelohedra;
Delone, 1929 and Stogrin, 1974.

Theorem (G., Magazinov, 2019+)
The Voronoi conjecture is true in R5.
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Hilbert’s 18th problem: lattices in Rd

I Finiteness of the family of crystallographic groups

I Existence of a polytope that tiles Rd but can’t be obtained
as a fundamental region of a crystallographic group

I Densest sphere packing in R3 (Kepler conjecture)
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Hilbert’s 18th problem: lattices in Rd

I Finiteness of the family of crystallographic groups
I Bieberbach, 1911-12;

I Existence of a polytope that tiles Rd but can’t be obtained
as a fundamental region of a crystallographic group
I Reinhardt, 1928 in R3 and Heesch, 1935 in R2;

I Densest sphere packing in R3 (Kepler conjecture)
I Hales, 2005 and 2017.
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Which (convex) polytopes may tile the space?

I R2: If n ≥ 7, then a convex n-gon cannot tile the plane;

Rao (2017+): full classification of pentagons (15 types).

I R3: the maximal number of facets for stereohedron is
unknown.

Engel (1981): There exists a stereohedron with 38 facets;

Santos et. al. (2001-2011): Dirichlet stereohedron cannot
have more than 92 facets.
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Parallelohedra and lattice covering problem

Problem: for a given d, find a lattice that gives optimal covering
of Rd with balls of equal radius.
I R2: Kershner, 1939 and A∗2;
I R3: Bambah, 1954 and A∗3;
I R4: Delone and Ryshkov, 1963 and A∗4;
I R5: Ryshkov and Baranovskii, 1976 and A∗5;
I Rd, d = 6, 7, 8 (examples only): Schürmann and Vallentin,

2006 and lattices different from A∗d.
The results in dimensions 4 through 8 rely on reduction theory
for lattices, or (partial) classification of Voronoi parallelohedra.
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SVP and CVP: using parallelohedra for lattice
algorithms

I SVP (Shortest Vector Problem): find a shortest non-zero
vector of a given lattice Λ;

I CVP (Closest Vector Problem): for a given target vector t
and a lattice Λ, find the vector x ∈ Λ that minimizes ||t− x||.

I LLL-algorithm for lattice reduction and polynomial
fatorization over Q;

I Solvability in radicals;
I Cryptography;
I Integer optimization.
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Spectral sets

Let Ω ⊂ Rd be a bounded measurable set with positive measure.

Definition
The set Ω is called spectral if there is an orthogonal basis of
exponential functions in L2(Ω).

Conjecture (Fuglede, 1974)
A set Ω ⊆ Rd is spectral if and only if Ω tiles Rd with translations.
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Spectral Sets II

There are non-convex counterexamples in
I R5: Tao, 2004; and in
I R4 and R3: Matolcsi, 2005 and Kolountzakis and Matolcsi,

2010.

Theorem (Lev and Matolcsi, 2019+)
The Fuglede conjecture holds for convex sets in Rd.

That is, all convex spectral sets are parallelohedra and each
parallelohedron is a spectral set.
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Reduction theory

I Reduction theory for lattices: find an “optimal” basis.

I “Dual” view: for a given positive definite matrix Q, find an
invertible integer transformation A, such that AtQA is
“optimal”.

I Voronoi’s reduction theory: find an optimal basis for the
representation of the Voronoi parallelohedron and for the
tiling dual to the Voronoi tiling.
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Delone tiling

Delone tiling is the tiling with “empty spheres”.

A polytope P is in the Delone tiling Del(Λ) iff it is inscribed in
an empty sphere.

The Delone tiling is dual to the Voronoi tiling.
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Constructing the Voronoi and Delone tilings

I Lifting construction for a point set X.
I Lift the points of X to paraboloid

y = xtx in Rd+1.
I Construct the tangent hyperplanes and

take the intersection of the upper
half-spaces; project this infinite
polyhedron back to Rd to get the
Voronoi tiling.

I Take the convex hull of points on
y = xtx and project this (infinite)
polyhedron back to Rd to get the
Delone tiling.
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From lattices to PQF

An affine transformation can take a lattice to Zd, but it changes
metrics from xtx to xtQx for some positive definite quadratic
form Q.

Task
Find all combinatorially different Delone tilings of Zd.

Definition
The Delone tiling Del(Zd,Q) of the lattice Zd with respect to
PQF Q is the tiling of Zd with empty ellipsoids determined by Q
(spheres in the metric xtQx).

20/49



Introduction Voronoi’s conjecture Hilbert’s 18th Reduction theory R5 Canonical Scaling R5 : dual cells

Secondary cones

Let Sd ⊂ R
d(d+1)

2 be the cone of all PQF.

Definition
The secondary cone of a Delone tiling D is the set of all PQFs Q
with Delone tiling equal to D.

SC(D) =
{

Q ∈ Sd|D = Del(Zd,Q)
}

Theorem (Voronoi, 1909)
SC(D) is a convex polyhedron in Sd.
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Secondary cones II
Theorem (Voronoi, 1909)
The set of closures all secondary cones gives a face-to-face tiling of the
closure of Sd (that is the cone of positive semidefinite quadratic
forms).

I Full-dimensional secondary cones correspond to Delone
triangulations

I One-dimensional secondary cones are called extreme rays

Lemma
Two Delone tilings D and D′ are affinely equivalent iff there is a
matrix A ∈ GLd(Z) such that

A(SC(D)) = SC(D′).
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Secondary cones in dimension 2

Any PQF Q =

(
a b
b c

)
can be represented

by a point in a cone over open disc.
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Secondary cones in dimension 2

We will find the secondary cone of Delone tri-
angulation on the right.
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Secondary cones in dimension 2

Each pair of adjacent triangles defines one
linear inequality for the secondary cone. For
the blue pair the inequality is b < 0.
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Secondary cones in dimension 2

The green pair of triangles gives us the in-
equality b + c > 0.
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Secondary cones in dimension 2

The red pair gives us the inequality a+b > 0.
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Secondary cones in dimension 2
The secondary cone is a cone over trian-

gle with vertices
(

1 0
0 0

)
,
(

0 0
0 1

)
, and(

1 −1
−1 1

)
.
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Secondary cones in dimension 2

Similarly we can construct secondary cones
for other triangulations.
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Secondary cones in dimension 2

Triangulations corresponding to adjacent
secondary cones differ by a (bi-stellar) flip.
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Secondary cones in dimension 2

Cones of smaller dimensions are secondary
cones of non-generic Delone decompositions.
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Five-dimensional Voronoi parallelohedra

Theorem (Dutour-Sikirić, G., Schürmann, Waldmann,
2016)
There are 110244 affine types of lattice Delone subdivisions in
dimension 5.

Additionally, all these classes correspond to combinatorially
different Voronoi parallelohedra.
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Proof of the Voronoi conjecture in R5

Let P be a five-dimensional parallelohedron.
I If P can be extended, then its extension has combinatorics

of one of 110244 Voronoi parallelohedra in R5;

I In five-dimensional case, global combinatorics a Voronoi
parallelohedron guarantees the geometric part of the
Voronoi conjecture.

I Local combinatorics can be used to show that P can be
extended.
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Free directions

Definition
Let I be a segment. If P + I and P are both parallelohedra, then I
is called a free direction for P.

I If I is a free direction for P, then the Voronoi conjecture
holds (or doesn’t hold) for P and for P + I simultaneously
(Grishukhin, 2004; Végh, 2015; Magazinov, 2015).

Theorem (Erdahl, 1999)
The Voronoi conjecture is true for space-filling zonotopes.

26/49



Introduction Voronoi’s conjecture Hilbert’s 18th Reduction theory R5 Canonical Scaling R5 : dual cells

Extensions of parallelohedra

Theorem (G., Magazinov)
Let P be a d-dimensional parallohedron. If I is a free direction for P
and the projection of P along I satisfies the Voronoi conjecture, then
P + I has the combinatorics of a Voronoi parallelohedron.
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Proof of the Voronoi conjecture in R5

Let P be a five-dimensional parallelohedron.
I If P can be extended, then its extension has combinatorics

of one of 110244 Voronoi parallelohedra in R5; Done!

I In five-dimensional case, global combinatorics a Voronoi
parallelohedron guarantees the geometric part of the
Voronoi conjecture.

I Local combinatorics can be used to show that P can be
extended.
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Checking the Voronoi conjecture

For a given parallelohedron P, how can we check/prove the
Voronoi conjecture for P?

I We can try to construct “shells” above each copy of P
tangent to some fixed paraboloid in Rd+1 and then
transform this paraboloid into y = xtx.

And here is a way to do it...
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Canonical scaling

Definition
A (positive) real-valued function n(F) defined on set of all
facets of the parallelohedral tiling is called a canonical scaling,
if it satisfies the following conditions for facets Fi that contain
arbitrary (d− 2)-face G:

G F1

e1

F2

e2

F3

e3

G
F1

e1

F2

e2

F3

e3

F4

e4

∑
±n(Fi)ei = 0
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Belts of parallelohedra

Definition
The set of facets parallel to a given (d− 2)-face is called belt.
These facets are projected onto sides of a parallelogram or a
hexagon.

There are 4-belts and 6-belts.
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Constructing canonical scaling

How to construct a canonical scaling for a given tiling?

I If two facets F1 and F2 of the tiling have a common
(d− 2)-face from 6-belt, then the value of canonical scaling
on F1 uniquely defines the value on F2 and vice versa.

I If facets F1 and F2 have a common (d− 2)-face from 4-belt
then the only condition is that if these facets are opposite
then values of canonical scaling on F1 and F2 are equal.

I If facets F1 and F2 are opposite in one parallelohedron then
values of canonical scaling on F1 and F2 are equal.
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Voronoi’s generatrix

Consider we have a canonical scaling defined on the tiling with
copies of P.
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Voronoi’s generatrix

We will construct a piecewise linear generatrix function
G : Rd −→ R.
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Voronoi’s generatrix

Step 1: Put G equal to 0 on one of the tiles.
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Voronoi’s generatrix

Step 2: When we pass across one facet of the tiling, the gradient
of G changes according to the canonical scaling.
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Voronoi’s generatrix

Step 2: Namely, if we pass a facet F with the normal vector e,
then we add the vector n(F)e to the gradient.
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Voronoi’s generatrix

We obtain the graph of the generatrix function G.
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Voronoi’s generatrix II
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Properties of generatrix

I The graph of generatrix G looks like a “piecewise linear”
paraboloid.

I And actually there is a paraboloid y = xtQx for some
positive definite quadratic form Q tangent to generatrix in
the centers of its shells.

I Moreover, if we consider an affine transformation A of this
paraboloid into paraboloid y = xtx then the tiling by copies
of P will transform into the Voronoi tiling for some lattice.

So to prove the Voronoi conjecture for P it is sufficient (and
necessary) to construct a canonical scaling on the tiling by
copies of P.
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Primitive parallelohedra

Definition
A d-dimensional parallelohedron P is called primitive, if every
vertex of the corresponding tiling belongs to exactly d + 1
copies of P.

Primitive parallelohedra appear exactly as dual to Delone
triangulations (not arbitrary Delone decompositions).

Theorem (Voronoi, 1909)
The Voronoi conjecture is true for primitive parallelohedra.
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Primitive parallelohedra II

Definition
A d-dimensional parallelohedron P is called k-primitive if
every k-face of the corresponding tiling belongs to exactly
d + 1− k copies of P.

Theorem (Zhitomirskii, 1929)
The Voronoi conjecture is true for (d− 2)-primitive d-dimensional
parallelohedra. Or the same, it is true for parallelohedra without belts
of length 4.
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Dual cells

Definition
The dual cell of a face F of given parallelohedral tiling is the set
of all centers of parallelohedra that share F.
If F is (d− k)-dimensional then the corresponding cell is called
k-cell.

The set of all dual cells of the tiling with corresponding
incidence relation determines a structure of a cell complex.

Conjecture (Dimension conjecture)
The dimension of a dual k-cell is equal to k.

The dimension conjecture is necessary for the Voronoi
conjecture.
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Dual 3-cells and 4-dimensional parallelohedra

Lemma (Delone, 1929)
There are five types of three-dimensional dual cells: tetrahedron,
octahedron, quadrangular pyramid, triangular prism and cube.

Theorem (Ordine, 2005)
The Voronoi conjecture is true for parallelohedra without cubical or
prismatic dual 3-cells.
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Topology meets canonical scaling
We know how canonical scaling should change when we cross
a primitive (d− 2)-face of F.

Question
Are there any topological reasons that will prevent us to assign
values of canonical scaling to all facets using such local guidance?

Definition
Let Pπ, the π-surface of P, be the manifold obtained from the
surface of P by removing non-primitive (d− 2)-faces and
identifying opposite points.

I We can assign values of canonical scaling along every curve
on Pπ and the canonical scaling exists if and only if we can
assign values consistently along every closed curve on Pπ.
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GGM condition

I Any half-belt cycle which starts at the center of a facet and
ends at the center of the opposite facet crossing only three
parallel primitive (d− 2)-faces gives consistent values for
canonical scaling.

Theorem (G., Gavrilyuk, Magazinov, 2015)
If the group of one-dimensional homologies H1(Pπ,Q) of the
π-surface of a parallelohedron P is generated by the half-belt cycles
then the Voronoi conjecture is true for P.
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How many parallelohedra satisfy the GGM
condition?

I All 5 parallelohedra in R3.

I All 52 parallelohedra in R4.

I All 110244 Voronoi parallelohedra in R5 (Dutour-Sikirić,
G., and Magazinov, 2020).

Corollary
If a 5-dimensional parallelohedron P has a free direction, then P
satisfies the Voronoi conjecture.
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Proof of the Voronoi conjecture in R5

Let P be a five-dimensional parallelohedron.
I If P can be extended, then its extension has combinatorics

of one of 110244 Voronoi parallelohedra in R5; Done!

I In five-dimensional case, global combinatorics a Voronoi
parallelohedron guarantees the geometric part of the
Voronoi conjecture. Done!

I Local combinatorics can be used to show that P can be
extended.
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Let P be a five-dimensional parallelohedron.
I If P can be extended, then its extension has combinatorics

of one of 110244 Voronoi parallelohedra in R5; Done!

I In five-dimensional case, global combinatorics a Voronoi
parallelohedron guarantees the geometric part of the
Voronoi conjecture. Done!

I Local combinatorics can be used to show that P can be
extended. Analysis of dual 3-cells and dual 4-cells to prove
existence of a free direction for P.
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Proof. Dual 3-cells
What are possible dual 3-cells of a five-dimensional
parallelohedron P?

I If all dual 3-cells are either tetrahedra, octahedra, or
pyramids, then P satisfies the Voronoi conjecture (Ordine’s
theorem).

I If P has a cubical dual 3-cell, then it has a free direction,
and hence satisfies the Voronoi conjecture (proof on the
next slide).

I If two-dimensional face F of P has prismatic dual cell, then
either an edge of F gives a free direction of P, or F is a
triangle.

The main tool used is a careful inspection of 32 parity classes of
lattice points and all half-lattice points. Central symmetry in
each half-lattice point preserves the tiling T (P), and lattice
equivalent points must carry the same local combinatorics.
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Proof. Cubic dual 3-cell
Lemma (Grishukhin, Magazinov)
A direction I is free for P if and only if every 6-belt of P has at least
one facet parallel to I.

I The space of half-lattice points is isomorphic to a
five-dimensional space over F2.

I Let F have a cubical dual cell. An edge e of F has an
additional point in its dual cell. Set of all midpoints
between these nine points give a 4-dimensional subspace
of the half-lattice space.

I The centers of facets of a 6-belt B give a two-dimensional
subspace of the half-lattice space.

I 4- and 2-dimensional subspaces of 5-dimensional space
intersect non-trivially, so there is a facet in B parallel to e.
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Proof. Dual 4-cells

For a triangular face F of P with prismatic dual 3-cells, the
edges may have only two types of dual 4-cells (or there is a free
direction for P).
I Pyramid over triangular prism.
I Prism over tetrahedron.

In all four possible choices for dual cells of edges of F we were
able to prove that either P has a free direction, or it admits a
canonical scaling.

Again, using a lot of local combinatorics and in most cases
exhaustively analyzing all 32 parity classes of lattice points.
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Proof. Prism-Prism-Pyramid case
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What about R6?

Challenges in six-dimensional case.

I There is a significant jump in the number of
parallelohedra. Baburin and Engel (2013) reported about
half a billion of different Delone triangulations in R6.

I The classification of dual 4-cells is not known and dual
3-cells might be not enough.
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THANK YOU!
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