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The goal of these lectures is to introduce the basics of statistical physics to people in-
terested in extremal, enumerative, and probabilistic combinatorics. At the most basic level,
I hope to provide a guide to translating terms from one field to the other: partition func-
tions, Gibbs measures, ground states, correlation functions etc. At the next level, I want to
describe the statistical physics way of looking at things: viewing systems through the lens
of correlations, phases, and phase transitions. Finally I want to indicate how all of this can
be put to use in combinatorics: what combinatorial methods can be developed based on the
statistical physics perspective and what new questions in combinatorics can we ask based on
this perspective.

These lectures will necessarily only cover a portion of the applications and connections of
statistical physics to combinatorics. In particular I will say very little about several very in-
teresting topics including the Lovasz Local Lemma, spin models on random graphs, graphons
and dense graphs, and entropy methods.

The five lectures will cover:

1. Fundamentals of statistical physics: Gibbs measures, partition functions, phase
transitions, correlations. How to approach combinatorics from the perspective of sta-
tistical physics.

2. Extremal combinatorics of sparse graphs: maximizing and minimizing the number
of independent sets in various classes of regular graphs. Linear programming and the
occupancy method.

3. Expansion methods and enumeration: cluster expansion. Conditions for conver-
gence. Consequences of a convergent cluster expansion.

4. Combinatorics at low temperatures: abstract polymer models. Multivariate hard-
core model as a universal model. Low-temperature enumeration with polymer models
and the cluster expansion.

5. Sphere packings, kissing numbers, and the hard sphere model: continuum
models and applications in combinatorics.
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1 Fundamentals of statistical physics

Statistical physics is the study of matter via probabilistic and statistical methods. The field
was born in the late 1800’s with important contributions by Maxwell, Boltzmann, and Gibbs.

The main motivating question in statistical physics is

Question 1.1. Can the macroscopic properties of matter (gasses, liquids, solids, magnets)
be derived solely from their microscopic interactions?

The beautiful idea behind statistical mechanics is that to understand a system with a huge
number of interacting particles or components, instead of tracking the position and velocity
of each particle, we can treat them as being distributed randomly, according to a probability
distribution that takes into account the microscopic interactions between particles.

1.1 Gibbs measures and partition functions

For now we will focus on spin models on graphs.

Fix a finite set of spins Q. For a graph G = (V, E), the set of configurations is Q"
assignments of spins to the vertices of G.

We define an energy function (or Hamiltonian) from Q" — R U {+o0}:
H(o) = Z flow) + Z 9(ou,0v)
veV (u,w)ER
where f: Q - R and g: Q x Q — RU {400} is symmetric. If g takes the value 400 we say
that there is a hard constraint in the model.
The partition function at inverse temperature (3 is
Zo() = Y e,
oceQV
The Gibbs measure is the probability distribution on Q" defined by
pe(o) = ———.
Za(B)

The inverse temperature 3 controls the strength of the interaction in the model.

e At 8 = 0 (infinite temperature) the Gibbs measure is simply uniform on Q" and so
each vertex receives a uniform and independent spin from €.

e At 8 = 400 (zero temperature), the Gibbs measure is uniform over the ground states of
the model: the configurations o that minimize the energy H(-). For Gibbs measures on
lattices like Z¢, it is often very easy to understand the ground states (e.g. all even/all
odd configurations for hard-core; monochromatic configurations for Ising/Potts). In
general though, this need not be the case. In particular, finding and understanding the
ground states of anti-ferromagnetic models on random graphs is a challenging problem,
both mathematically and algorithmically.



e Taking f positive and finite interpolates between independence (pure entropy) and
optimization (pure energy). Understanding the Gibbs measure and partition function
at positive temperature requires balancing energy and entropy.

From the combinatorics perspective, the Gibbs measure interpolates between two objects
we study a lot: a purely random object (say a uniformly random cut in a graph) and an
extremal object (the max cut or min cut in a graph).

An important theme in statistical physics is that the qualitative properties of the two ends
of the interpolation persist at positive temperature: a weakly interacting system has many
of the properties of an independent system, while a strongly interacting system correlates
strongly with the extremal object. The switch from one qualitative regime to the other is a
phase transition, the main topic of statistical physics.

1.2 Examples

The following are some examples of statistical mechanics models to keep in mind during these
lectures. To start thinking like physicist, you can imagine the underlying graph G is a finite
box in Z¢ (or even in Z?).

1. The hard-core model (hard-core lattice gas). Given a graph G, allowed configurations
are independent sets. The probability we pick an independent set I is )“(‘)\) where
A > 0 is the fugacity or activity. We can take Q = {0,1} with f(1) =logA, f(0) =

and ¢g(1,1) = +oo (a hard constraint).

The hard-core model is a toy model of gas, and on Z? the model exhibits a gas/solid
phase transition.

|:| Unoccupied
- Even occupied

- Odd occupied

Low fugacity High fugacity

Figure 1: Two instances of the hard-core model on Z?

2. The Ising model. Configurations are assignments of £1 spins to the vertices of a graph.
M(G,0)

A configuration o is chosen with probability € 27(5) where M (G, o) is the number of
edges of G whose vertices receive the same spin. That is, g(oy, 0y) = 0y0y.



If we think of the spins as being in/out the the Ising model is a probability distribution
over cuts of G. The parameter (3 is the inverse temperature. § > 0 is the ferromagnetic
case: same spins are preferred across edges. § < 0 is the antiferromagnetic case. The
Ising model is a toy model of a magnetic material (it magnetizes when spins align
globally).

. The Potts model. The Potts model is a generalization of the Ising model to ¢ > 2
spins (or colors). Configurations are assignments of ¢ colors to the vertices of a graph.
A configuration is chosen with probability % where M (G, o) is the number of
monochromatic edges of G under the coloring o. Again 5 > 0 is the ferromagnetic and

B < 0 the antiferromagnetic case.

High temperature ( small) Low temperature ( large)

Figure 2: Two instances of the 4-color ferromagnetic Potts model on Z?

Not all Gibbs measures are spin models on graphs.

4. The monomer-dimer model. Allowed configurations are matchings in G, with P(M) =

| M| . . . . .
Z)\G—(A)' ‘Dimers’ are edges in the matching while ‘monomers’ are unmatched vertices.

The monomer-dimer model is the hard-core model on the line graph of G. This is an
example of an edge coloring model (see e.g. [47T]).

. The hard sphere model. This is a continuum model of a gas and perhaps the original
model in statistical mechanics.

. The hard-core model on a hypergraph. Configurations are subsets S of vertices that
contain no hyperedge, weighted by ASl. The Hamiltonian now has terms corresponding
to each hyperedge. Such an interaction is called a multibody interaction.



Figure 3: The hard sphere model at low and high density

1.3 Motivation for the form of the distribution

Why does a Gibbs distribution have an exponential (or ‘log linear’ form)? There are a few
ways of answering this.

1. What was the original derivation of this form?

If we imagine occupied vertices of an independent set are particles in a large box rep-
resented by a portion of Z? then

2. Why is it useful?

Gibbs measures have a very important conditional independence property: they are
Markov random fields and satisfy:

P(oy = 1|{ow = Tutuev—) = P (Uv = 1p[{on = Tu}ueN(v)) .

Equivalently, suppose we partition V = AU B U C' so that there are no edges between
A and C. Then if we condition on the spins in B, the spins in A are independent of
the spins in C.

Note that such a property is not true in other natural models of a random independent
set, such as choosing a random independent set of size k in G uniformly at random.

3. Is it an ‘optimal’ distribution in some sense?

Yes! Say we have a finite set ¥ of configurations and a function H : ¥ — R U {+o0}.

Consider the set Pg of all probability distributions p on X so that E,H = B where

minyey H(o0) < B < maxgsey. Then the distribution p, € Pp that maximizes the
o—BH(0)

Shannon entropy has the form p. (o) = @~ With Z(B) = Y. e PH(@) That is, it is
a Gibbs distribution.

For example, the Ising model is the probability distribution on cuts of G that maximizes
entropy subject to a given mean number of edges cut. The hard-core model is the
distribution on independent sets of G with a given mean size that maximizes entropy.



In combinatorics we are very familiar with the benefits of studying maximum entropy
distributions.

Exercise 1. Let G, be the set of all graphs on n vertices. What is the mazimum entropy
distribution on G, with mean number of edges m?

1.4 Marginals and correlations

Central to the statistical physics point of view is considering how correlations in a given
model behave and how this behavior depends on the parameters. All of the discussion below
pertains to general graphs, but again for intuition keep in mind a graph like Z? or Z% with
very natural geometry.

We will also focus here mostly on two-spin models, like Ising or hard-core where a prob-
ability distribution on the spin set {2 can be specified by its expectation.

The marginal or occupation probability of a vertex v is u, = E[o,]; for instance, in the
hard-core model p, = P(v € I). (For a g-spin model like Potts the marginal would be a
probability distribution on [g]).

For a pair of vertices u, v, the joint marginal is p,, = E[oy0,]. In the hard-core model,
this is pyy = Prgau, v € I]. (For a g-spin model, the joint marginal would be described by
a ¢ X ¢ matrix).

For a subset S C V, the joint marginal is s = E[[[,cq00]. If [S| = &, then ug is also
called the k-point correlation function.

We are often interested in how strong correlations between spins are, as a function of the
parameters of the model and the distance between vertices. A natural way to measure the
correlation between the spins at vertices u and v is the compute a covariance:

:‘i(’u,, U) = Huy — Myl -

If 0, and o, were independent then x(u,v) would be 0; if x(u,v) is small in absolute value
then we can say o, and o, are weakly correlated. The quantity x(u,v) is called the truncated
2-point correlation function. One can also define truncated k-point correlation functions.

1.4.1 Decay of correlations

We say ug exhibits exponential decay of correlations if there exist constants a,b > 0 so that
for all u,v eV,

‘Ii(u,’u)’ = ’Muv — MUMU| S ae—b~dist(u,y) ’

where dist(+,-) is the graph distance in G. This definition really pertains to an infinite
sequence of graphs G, (or an infinite graph like Z¢) and in this case a and b should be
independent of n.

If k(u,v) ~ e~ 04t (u) then we call 1/b the correlation length of the model: a measure of
how far correlations persist. If spins are independent then the correlation length is 0, while
if there is long-range order, |k(u, v)| bounded away from 0 independent of the distance, then
the correlation length diverges to oc.



1.5

Phase transitions

There are at least three different but related notions of phase transition in statistical physics.
In many situations the three definitions are equivalent.

A phase transition only occurs in the infinite volume limit. Let A,, C Z% be the box of
sidelength n, and let |A,| be the number of its vertices. We consider the Gibbs measure and
partition function on A, with boundary conditions: for vertices on the boundary, we may
specify their spins (or leave them ‘free’). For instance we may take the all even boundary
conditions for the hard-core model: all vertices on the boundary whose sum of coordinates are
even are specified to be in the independent set. Under very general conditions the following

are true:

1. There is a subsequential weak limit of the Gibbs measures pj, as n — oco. Such a
limiting measure p is an infinite-volume Gibbs measure.

2. The limit )

= lim —logZ
f(B) = lim T A (B)

exists and is independent of the sequence of boundary conditions.
The function f(f) is called the infinite volume pressure or free energy.

1. Disorder vs long-range order.
A phase transition occurs at 3. if for § < . the model exhibits exponential decay
of correlations while for 5 > . long-range correlations persist (the correlation length
diverges).

2. Uniqueness vs non-uniqueness of the infinite volume Gibbs measure.
A phase transition occurs at . if for § < (. there is a unique infinite volume Gibbs
measure, while for § > . there are multiple infinite volume Gibbs measures. That is,
for 8 < f. the effect of the boundary conditions vanishes in the limit while for g > 3.
the effect of boundary conditions persists.
Often there are extremal boundary conditions: even/odd occupied for hard-core,
monochromatic boundary conditions for Ising/Potts. Then we can ask does the choice
of extremal boundary conditions affect the marginal of the origin as n — oc.

3. Analyticity vs non-analyticity of the infinite volume pressure.

A phase transition occurs at (. if the function f(f) is non-analytic at S.. A phase
transition is first-order if f/(3) is discontinuous at (. and second-order if f”(j) is
discontinuous at f..

Analyticity of f(3) is closely related to the zeroes of Z,, (/) in the complex plane. As
a function Zy, (f) is a polynomial in e=? with positive coefficients and so has no zeros
on the positive real axis. If there is a region in the complex plane containing Sy > 0 for
which Zp, =# 0 for all n, then f must be analytic at 5y and thus no phase transitions
occurs. A phase transition occurs when zeros of Z,, in the complex plane condense
as n — oo onto a positive S.. This perspective is called the Lee-Yang theory of phase
transitions [50]



1.6 Translation to combinatorics

Here’s a basic glossary of objects and concepts in statistical physics with their counterparts
in combinatorics.

Statistical physics Combinatorics
ground state extremal object
partition function (weighted) number of objects
Gibbs measure random object
free energy (pressure) | exponential growth rate of the number of objects
zero-temperature extremal objects
low-temperature stability

Take, for example, Mantel’s Theorem: the triangle-free graph on n vertices with the most
edges is a complete bipartite graph with a balanced bipartition. Classifying the extremal
examples is the task of understanding the ground states. Asking ‘how many triangle-free
graphs are there?’ is the counting problem: computing or approximating the partition func-
tion. "What does a typical triangle-free graph look like?” This is the problem of understanding
the Gibbs measures and its correlations.

Classical statistical physics focuses on lattices like Z? (with special emphasis on the most
physically relevant cases Z? and Z3. In particular, these graphs have a few special properties:
they are regular, vertex-transitive and of polynomial growth (the number of vertices within
distance t of a fixed vertex grows like t?).

Extremal combinatorics, on the other hand, is the study of extremal, ‘worst-case’ graphs.
Often the graphs studied in combinatorics are very different than lattices: sparse random
graphs, for instance, play a leading role in probabilistic combinatorics but their neighborhoods
grow exponentially. On the other hand, they are very good expanders and their local structure
is particularly simple: typical local neighborhoods are trees.

1.7 Moments, cumulants, and derivatives of the log partition function

The energy H(-) is a local function: it is a sum of functions on vertices and edges. As
a random variable, H (o) is a locally computable statistic or observable of the model. For
instance in the hard-core model it counts the size of an independent set while in the Ising
and Potts models it counts the number of monochromatic edges (or equivalently the number
of crossing edges of a cut).

Understanding the random variable H () in the limit A,, — Z% can tell us a lot about the
behavior of the model and any phase transitions that might occur as parameters are varied.

To understand the random variable H (o) we’d like to know its expectation, variance as
a start, and then perhaps higher moments.

For a random variable X, the moment generating function is Mx(t) = Ee'X. The cu-
mulant generating function is its logarithm Kx(t) = logEe!X. The cumulants of X are the



coefficients in the Taylor series:
oo tn
Kx(t)=)_ ,-;n(X)m .
n=1

. Or in other words, k,(X) = Kg?) (0).

Cumulants are related to moments but are often more convenient to work with in statisti-
cal physics. For example, the cumulants of a Gaussian N (u, 0?) are k1 = pi, ke = 02, Kk, = 0
for £ > 3 (and the vanishing of the higher cumulants characterizes the Gaussian distribution.
The cumulants of a Poisson(\) random variable are all A.

Recall that the partition function looks similar to a moment generating function:
7= ).
g

By taking derivatives of log Z(3) in 8 we obtain the cumulants of the random variable
H(o).

d d
%logZ(ﬂ) =

The second derivative is

2 Ly 4z 2
dd[plog Z(B) = dﬂz(ﬁ()m - (dﬁZ(é?))
=E[H(0)%] - (EH(0)”
= var(H (o))
= k2(G).
The higher derivatives recover the cumulants of the energy:
o8 2(8) = (1)),

1.7.1 Multivariate partition functions

To study correlations via the partition function we need to add variables to the partition
function to distinguish individual vertices. We add non-uniform external fields for every



vertex. Consider the following partition function of a two-spin model with non-uniform
external fields given by the vector « :

Zg(a) = Z eXvev Wwov . o=BH(o)
ceqQV

Then we can look at the partial derivatives of log Zg with respect the variables ay,.

log Z =
T, 08 c(a)

so we have recovered the marginal of v by taking a partial derivative.

We can now take mixed partial derivatives with respect to au,, a:

2
Bada. log Zg(a) =
= E[oyo,] — E[oy]E[o)]
= Huy — Hulhy
= k(u,v).

In fact we can obtain the joint cumulants of any collection of spins by taking partial deriva-
tives. The truncated k-point correlation functions are the joint cumulants of & spin variables.

For more on joint cumulants in the setting of the Ising model at low temperature, see [12].

An important special case of the use of non-uniform external fields is the multivariate
hard-core model. The is a probability distribution over independent sets of G in which each
vertex has its own fugacity A,. The partition function is:

ZeN) =Y [

1€Z(G) vel

This is a multilinear polynomial in n variables. Not only can we use it to study correlations
in the hard-core model, but taking the multivariate perspective is also the natural setting of
some analytic techniques for understanding complex zeros of the partition function (e.g. [43,
35, 133)).

Note that since we have written the hard-core partition function as a polynomial (univari-
ate or multivariate) we have to adjust the formulas for the cumulants and joint cumulants
slightly. For instance, the expected size of an independent set drawn from the hard-core
model on G at fugacity A is

; ]
E[T] = A - (log Zo(X))" = )\ZZGG(()\);) - Zzﬁ'f('f) : (1)

10



1.8

Basic tools and tricks

If G; and G are disjoint graphs then Zg,uG, = Zg, Zg,- If ©w and v are in different connected
components of G then o, and o, are independent and fiyy, = [y fby-

The following identity is often useful. For any v € V,

26(N) = Mg_§()(A) + Za—o(N) (2)

where N(v) = {v} U N(v). We can use this to write the marginal

1.9

Summary

The basic objects in statistical physics are Gibbs measures and partition functions.
Statistical physicists are interested in the correlation properties of Gibbs measures in
the infinite volume limit on graphs like Z<.

The inverse temperature parameter interpolates from independence to optimization

The form of a Gibbs measure (probability proportional to exponential of an energy, or
‘log linear’) is physically motivated and provides some very useful properties including
conditional independence and the ability to write statistics as derivatives of the log
partition function.

The cumulants of the energy can be obtained by taking derivatives of the log partition
function in . By putting external fields on all vertices, we can obtain the joint cumu-
lants of any set of spins by taking partial derivatives of the log partition function with
respect to these external fields.

Many ideas, themes, questions, and objects in combinatorics have counterparts in sta-
tistical physics; knowing a little of the terminology will allow you to move between the
two fields.

To read more on the basics of statistical physics, see the recent textbook of Friedli and
Vilenik [14]. For many classical and foundational results (including for continuum models),
see the classic text of Ruelle [38]. For a computational perspective on statistical physics
models and random graphs, see the textbook of Mezard and Montanari [32].

1.10 Exercises

1.

2.

Compute Zg,(A). For u,v € K4 compute the truncated two-point correlation function.

Prove that the following distribution on independent sets of G is the hard-core model
at fugacity A. Pick a subset S by including each vertex independently with probability
1%\ and condition on the event that S is an independent set.

11



. Consider the hard-core model on a graph G of maximum degree A. Fix a vertex v.
Prove that

<<
(14 N)A+! SRS 10N

Show that the upper bound is tight. Is the lower bound tight? If not, can you prove a
tight bound?

. Let A,, C Z% be the box of sidelength n, and let |A,,| be the number of its vertices. Con-
sider the hard-core model on A,, with boundary conditions (vertices on the boundary
may be specific ‘in’ or ‘out’ of the independent set).

(a) Prove that the limit lim,, \T1n| log Zy,, () exists. (Hint: look up ‘subadditivity’).
(b) Show that the limit does not depend on the boundary conditions.
. Consider the hard-core model on a graph G and let F' be the set of vertices that are not

in the independent set and have no neighbor in the independent set (they are free to
be added to the independent set). Calculate E[|F|] in terms of derivatives of log Zg(\).

. Let P, be the path on n vertices.

(a) Write a recursion for the independence polynomial Zp, (A).

(b) Solve the recursion to compute the limit f(\) = lim,, oo < log Zp, ().

n
(c) What can you deduce about phase transitions in the hard-core model on Z! from
the function f(\)?

. Consider the hard-core model on a bipartite graph G with bipartition (A, B). Prove
(by induction?) that if u,v € A then k(u,v) = pyy — pupty > 0. (Hint: look up the
FKG inequality; it is also possible to prove without using FKG). When does equality
hold?

12



2 Extremal combinatorics of sparse graphs

The field of extremal combinatorics asks for the maximum and minimum of various graph
parameters over different classes of graphs. Some examples of classic theorems from extremal
combinatorics are Mantel’s Theorem mentioned above, or Dirac’s Theorem: which graph on
n vertices containing no Hamilton cycle has the largest minimum degree?

Here we focus on extremal results for bounded-degree graphs. We first mention three
classic results in this area, then we discuss how taking the point of view of statistical physics
and correlations allows us to reprove, strengthen, or generalize these results. For a nice
overview of results, techniques, and open questions in the area, see the survey of Zhao [52].

We will combine the statistical physics and combinatorics perspectives: like statistical
physicists we will be interested in correlations, but we will ask extremal questions about
correlations. For a given class of graphs, when do spins have the strongest positive correlation?
The strongest negative correlation? The least correlation?

Independent sets in regular graphs

Which d-regular graph has the most independent sets? This question was first raised in the
context of number theory by Andrew Granville, and the first approximate answer was given
by Noga Alon [2] who applied the result to problems in combinatorial group theory.

Jeff Kahn gave a tight answer in the case of d-regular bipartite graphs.

Theorem 2.1 (Kahn [26]). Let 2d divide n Then for any d-regular, bipartite graph G on n
vertices,

/2d
i(G) < i(Hap) = (21 -1)"
where Hg, is the graph consisting of n/2d copies of Kq 4.

In terms of the independence polynomial, we can rephrase this as: for any d-regular,
bipartite G,
ZG(l) < ZKd,d(l)n/2d7

or, more convenient from our perspective,

1
———1logZg(1) < —logZ 1).

Work of Galvin and Tetali [20] and Zhao [51] extended this result to all values of the inde-

pendence polynomial and all d-regular graphs.

Theorem 2.2 (Kahn; Galvin-Tetali; Zhao). For all d-regular graphs G and all A > 0,

1 1
——log Zg(A) < —logZ A).
|V(G)‘ 0og G( ) — 2d 0g Kd,d( )
See Galvin’s lecture notes on the entropy method [17] for an exposition of the proof of
Theorem and extensions. See also the recent work of Sah, Sawhney, Stoner, and Zhao [39]
for an extension to irregular graphs.

13



The question of minimizing the number of (weighted) independent sets in a d-regular
graph is somewhat simpler: the answer it the clique K441, proved by Cutler and Radcliffe [8];
for a short proof see [11].

Independent sets in triangle-free graphs

Among all d-regular graphs, the graph with the smallest scaled independence number is the
clique K411. If we impose the condition that G has no triangles, then it is not immediately
clear which graph has the smallest independence number o(G).

Following Ajtai, and Komlds, and Szemerédi [1], Shearer proved the following.

Theorem 2.3 (Shearer [44]). For any triangle-free graph G on n vertices of average degree

at most d,
logd

d

a(G) > (14 o04(1) n.

As a consequence, Shearer obtained the current best upper bound on the Ramsey number
R(3,k).
Corollary 2.4 (Shearer [44]). The Ramsey number R(3,k) satisfies

2

R(3.8) < (1 o4(1) (0

The random d-regular graph (conditioned on being triangle-free) satisfies

2logd

a(G) = (14 0a(1))

n

and so there is a factor of 2 that could potentially be gained in Shearer’s bound. The factor
of 2 would immediately give a factor 2 improvement to the bound on R(3, k).

Matchings and perfect matchings

A third classic result that can be interpreted as an extremal problem for bounded degree
graphs is Bregman’s Theorem [6]. This theorem gives an upper bound on the permanent of
a 0/1 matrix with prescribed row sums.

A special case of Bregman’s theorem can be stated as an extremal result for d-regular
graphs. Let pm(G) denote the number of perfect matchings of a graph G.

Theorem 2.5 (Bregman). For all d-regular graphs G,

1
log pm(G) < =~ log pm(Kq.)

1
V(G T2
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2.1 The occupancy fraction of the hard-core model

In this section we present a statistical physics based approach to proving extremal theorems
for sparse graphs. We will prove extremal results for partition functions and graph polynomi-
als by optimizing the derivative of the log partition function over a given class of graphs. By
integrating the resulting bound we obtain a corresponding result for the partition function.
As we saw in Lecture 1, the logarithmic derivative has a probabilistic interpretation as the
expectation of a locally computable observable of the relevant model.

We start with independent sets and the hard-core model, where the relevant observable is
the expected size of an independent set drawn from the model. It will be more convenient for
us to divide this by the number of vertices and study the expected independent set density,
or the occupancy fraction, ag(\):

1

ag(A) = WEGMH-

We begin by collecting some basic facts about the occupancy fraction, following our
discussion above about the cumulants and logarithmic derivatives of the log partition function.

Lemma 2.6. The occupancy fraction is A times the derivative of the free energy:

Fe(A) = A- <|V(1G)’ log Zg(/\)> .

Lemma 2.7. The occupancy fraction ag(\) is a strictly increasing function of \.

This follows since the second derivative of log Z is, up to scaling, the variance of |I
which is strictly positive.

The occupancy fraction captures quite a lot of combinatorial information:

e a(1) is the average size of a (uniformly) random independent set from G.

o limy o ag(N) = @, the scaled size of the largest independent set in G.

e Since a(N\) is the scaled derivative of log Z;()), we can compute the partition function
(or the number of independent sets) of G:

1 - A@g(t)
|V(G)long()\)—/0 g

In particular if we can prove upper or lower bounds on the occupancy fraction, then
by integrating we obtain upper and lower bounds on the partition function (and the
number of independent sets).

What is particularly nice about working with the occupancy fraction (or any other ob-
servable) is that we can argue about it locally.

In trying to understand correlations between spins in the hard-core model, we can use an
idea that has appeared both in combinatorics and computer science (e.g. [20, 13]): instead

15



of considering correlations between spins (occupancies) we consider correlations between the
events that different vertices are allowed to be in the independent set — not blocked by another
vertex.

We say v is uncovered with respect to an independent set I if N(v) N1 = (.

A

Fact 1 Pr[v € I|v uncovered] = 175.

The follows from the spatial independence property of a Gibbs measure. If N(v) NI = (),
then v can be either in or out; in the first case it contributes a factor A\ in the second case a
factor 1.

Fact 2 If G is triangle-free, then Pr[v uncovered|v has j uncovered neighbors] = (1 + \)77.

To prove Fact 2 note that the graph induced by the uncovered neighbors of v consists of
isolated vertices since G is triangle free.

Now we write @g(A) in two ways:

ag(\) = - Z Pr[v € 1]
veV(Q)
1
= nli)\ Z Pr[v uncovered] by Fact 1
veV(G)
1A 2 '
=T Z Z Pr[v has j uncovered neighbors] - (1 4+ \)™7 by Fact 2,

veV(Q) j=0

and

11
ag(\) = o 6%(:G);)Pr[u €I] since G is d-regular

11 A
=231 EVZ(G);Pr[u uncovered| by Fact 1.

Now consider the following two-part experiment: pick I from the hard-core model on
G and independently choose v uniformly at random from V(G). Let Y be the number of

uncovered neighbors of v with respect to I. Now our two expressions for ag(A) can be
interpreted as expectations over Y.

ac(N) = 3 Eeal + 7Y
1 A
ag(N) = pEpn SEanY
Thus the identity
_ 1
Eqa(1+A)7Y = FEenY (4)

holds for all d-regular triangle-free graphs G.
We can use this observation to prove a strengthening of Theorem
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Theorem 2.8 (Davies, Jenssen, Perkins, Roberts [9]). For any d-regular graph G, and any
A >0,

d—1
TN < @) = i T

Proof of Theorem [2.8, We prove this first for triangle-free G to illustrate the method.

Now the idea is to relaz the maximization problem; instead of maximizing @g(\) over all
d-regular graphs, we can maximize H%\IE(l +A)~Y over all distributions of random variables
Y that are bounded between 0 and d and satisfy the constraint .

It is not too hard to see that to maximize EY subject to these constraints, we must put
all of the probability mass of Y on 0 and d. Because of the constraint , there is a unique

such distribution.

Now fix a vertex v in Ky 4. If any vertex on v’s side of the bipartition is in I, then v has
0 uncovered neighbors. If no vertex on the side is in I, then v has d uncovered neighbors. So
the distribution of Y induced by Ky 4 (or Hyy,) is exactly the unique distribution satisfying
the constraints that is supported on 0 and d. And therefore,

aG()‘) < aKd,d()\) :

Now we give the full proof for graphs that may contain triangles.

Let G be a d-regular n-vertex graph (with or without triangles). Do the following two
part experiment: sample I from the hard-core model on G at fugacity A, and independently
choose v uniformly from V(G). Previously we considered the random variable Y counting
the number of uncovered neighbors of v. When G was triangle-free we knew there were no
edges between these uncovered vertices, but now we must consider these potential edges. Let
H be the graph induced by the uncovered neighbors of v; H is a random graph over the
randomness in our two-part experiment.

We now can write @g(\) in two ways, as expectations involving H.

_ A A 1
ag(A) = T (].;31/“\[V uncovered] = T )\IEGA [ZH(/\)] (5)
TN = JEaAlln VW) = JEaa |75 (©

and so for any d-regular graph GG, we have the identity

e k] - ]

Now again we can relax our optimization problem from maximizing @g over all d-regular

graphs, to maximizing IJ%AE [ﬁ(k)] over all possible distributions H on H,4, the set of
graphs on at most d vertices, satisfying the constraint @

We claim that the unique maximizing distribution is the one distribution supported on
the empty graph, (), and the graph of d isolated vertices, K4. This is the distribution induced

17



by Kg44 (or Hgp) and is given by

o (+NT-1
fgi(H =0 = 21+ M) —1

o (N
raat R Sy T

To show that this distribution is the maximizer we will use linear programming.

Both our objective function and our constraint are linear functions of the variables
{p(H)}Hen,, so we can pose the relaxation as a linear program.

A 1
maximize Z p(H)  ——
Her, 14+ A ZH()\)

subject to p(H) > 0VH € Hq

> p(H) =1

HeHy

A1 Az
H;dp(H) [1 FAZp(\) ng(x) =0

The first two constraints insure that the variables p(H) form a probability distribution; the
last is constraint .

d_ N d
(1+A)9=1 (Ky) = 2((1+,\)

aitaa—1’ P = S0enIT with objective value

Our candidate solution is p(f)) =

d—1
ax, . (A) = %. To prove that this solution is optimal (and thus prove the theorem),

we need to find some feasible solution to the dual with objective value @k, , ().

The dual linear program is:

minimize A,
A 1 A Zy(N) S A

bject to A, + A d 1
subject to Ay CIHEANZg(N) dZg(N)] T 1+ X Zg(N)

forall H € Hy.

For each variable of the primal, indexed by H € H,4, we have a dual constraint. For each con-
straint in the primal (not including the non-negativity constraint), we have a dual variable, in
this case A, corresponding to the probability constraint (summing to 1) and A. corresponding
to the remaining constraint. (Note that we do not have non-negativity constraints A,, Ac > 0
in the dual because the corresponding primal constraints were equality constraints).

Now our task becomes: find a feasible dual solution with A, = @, ,(A). What should
we choose for A.? By complementary slackness in linear programming, the dual constraint
corresponding to any primal variable that is strictly positive in an optimal solution must
hold with equality in an optimal dual solution. In other words, we expect the constraints
corresponding to H = (), K4 to hold with equality. This allows us to solve for a candidate
value for A.. Using Zy(\) = 1 and Zj(\) = 0, we have the equation

_ A A
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Solving for A, gives

Ao A+
C 214 N4 -1
. . . e (14Nt .
Now with this choice of A, and A, = @k, ,(\) = N1 our dual constraint for H € Hg
becomes:
ML+ A4+ N4—1 [ A 1 A Z5(\) A 1

214+ 0)9—1 " 20+NT—1[1+AXZx(\) dZg(\) Z1+AZH(A)' ®)

Multiplying through by Zz(A) - (2(1 + A\)? — 1) and simplifying, reduces to

Ad(1+ N3t o A\

T+N 1= Za(\) -1 )

and we must show this holds for all H € H4 (except for H = () for which we know already
the dual constraint holds with equality). Luckily @[} has a nice probabilistic interpretation:
the RHS is simply Eg  [|I|||T| > 1], the expected size of the random independent set given
that it is not empty, and the LHS is the same for the graph of d isolated vertices. Proving @[}
is left for the exercises, and this completes the proof. O

2.2 Minimizing independent sets for triangle-free graphs

Instead of asking for the strongest positive correlations, we can ask for the strongest negative
correlations. Or, in other words, we can try to minimize the occupancy fraction given our
identity (for triangle-free graphs) Eg (1 +A)~Y = éEGAY.

Theorem 2.9 (Davies, Jenssen, Perkins, Roberts [10]). For all triangle-free graph G of
mazimum degree d,
logd

ag(1) > (1+04(1)) 4

Moreover,

2
log“ d
d n

i(G) > e(%-i-o(z(l))

The respective constants 1 and 1/2 are best possible and attained by the random d-regular
graph.

Proof. We now return to the identity for triangle-free graphs. We remarked that to
maximize EY given the constraint E(14+ A)~Y = 2EY and 0 <Y < d, we should take Y to
be supported on the two extreme values, 0 and d.

What if we want to minimize EY subject to these constraints? In this case, by convexity,
we should take Y to be constant: Y = y* where (1 + A)™¥ = L., or in other words,
y* . ey* log(1+X) — d.

Formally, we can use Jensen’s inequality:

1
JEY =E(1+ A)7Y > (14 2)7EY
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Figure 4: 1%\3/* as a function of A with d = 100.
and so EY > ¢* as above.
The solution is

«  Wi(dlog(1+ X))
log(1+ A)

where W(+) is the W-Lambert function. This gives

1 A W(dlog(l+ X))
dl+X  log(1+2A)

ag(A) > (10)

Now although @g(\) is monotone increasing in A\, somewhat surprisingly the bound
is not monotone in A (see Figure 4| for example).

It turns out that it is best to take A = A(d) — 0 as d — oo, but not as quickly as any
polynomial, that is A(d) = w(d™¢) for every € > 0.

We set A = 1/logd and derive a bound asymptotically in d. We show in the exercises
that the Lambert function satisfies

W(z) = log(z) — loglog(z) + o(1)

as & — 00. If A = 0 then ryypzmmy — 1 and W(dlog(1 + A)) = (1 + 0g(1))logd. This
gives, for A = 1/logd,

logd
d I

ag(A) = (14 04(1))

and by monotonicity this extends to all larger .

To obtain the counting result we integrate the bound for A = 0 to 1 to obtain a lower
bound on the partition function.

dt

1 , 1 Lag(t)
| — Zlog Zg(1) =
- ogi(Q) ~log a(1) /0 n
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1 W(dlog(l+t
/ os( +))dt from
_1
d
1

dl1+t log(l1+1)
(dlog2)
/ 1+ udu using the substitution u = W (dlog(1l +t))

=3 W (dlog2) + W(dlog 2)?
1 log? d
2 d

Using a similar argument to the proof of the R(3, k) upper bound, we can use Theorem
to give a lower bound on the number of independent sets in a triangle-free graph without
degree restrictions.

O]

Corollary 2.10. For any triangle-free graph G on n vertices,

i(G) > (T He) Vs

Proof. Suppose the maximum degree of G is equal to d. Then i(G) > 2¢ since we can
simply take all subsets of the neighborhood of the vertex with largest degree, and i(G) >

2
e(3+0aM) " f10m Theorem [2.9] As the first lower bound is increasing in d and the second

is decreasing in d, we have
1 log2 d .
i(G) > mgnmax {2d76(2+0d(1)) K ”} — 9d

log2 d

4 " that is,

V2y/nlogn
4/lTog2 ’

where d* is the solution to 2¢ = e(%J“Od(l))

d* = (1+o04(1))

and so

(@) 5 (Tt} s

2.2.1 Max vs. average independent set size?

Theorem implies the upper bound on R(3, k) in exactly the same way as Shearer’s bound,
as the occupancy fraction is of course a lower bound on the independence ratio. But we might
hope that it gives more — that in triangle-free graphs there is a significant gap between the
independence number and the size of a uniformly random independent set (i.e. at A =1 in
the hard-core model).
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Question 2.11. Can we use Theorem[2.9 to improve the current asymptotic upper bound on
R(3,k).

We give three specific conjectures whose resolution would improve the bound.

Conjecture 2.12 ([10]). For any triangle-free graph G, we have

a(G)

V@ aem =

Conjecture 2.13 ([10]). For any triangle-free graph G of minimum degree d, we have

a(G)

W@ aom =1~

Conjecture 2.14 ([I0]). For any e > 0, there is X small enough so that for any triangle-free
graph G we have

>2—c.

Conjecture would imply a factor 4/3 improvement on the current upper bound for
R(3, k), while Conjectures and would both imply a factor 2 improvement.

2.3

2.4

Summary

Observables — expectations of locally computable statistics of a Gibbs measure — can be
calculated by taking derivatives of log partition functions. This means that extremal
bounds on observables over a class of graphs imply extremal bounds on partition func-
tions.

The occupancy fraction of the hard-core model is one such observable and it encodes
both the independence number of a graph and the number of its independent sets.

By using the properties of a Markov random field we wrote an identity for the occu-
pancy fraction of any d-regular triangle-free graph in terms of the number of uncovered
neighbors of a randomly chosen vertex when choosing a random independent set from
ua. We showed that maximizing and minimizing the occupancy fraction subject to
the constraint imposed by the identity yields two theorems, one on the number of
independent sets and the other on the average size of an independent set.

This method can be generalized to other partition functions (for matchings, colorings,
the Potts model, etc.) and for other classes of graphs (graphs of a given minimum girth
for instance).

Exercises

. Let i (G) denote the number of independent sets of size k in G (these are the coefficients

of the hard-core partition function).
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(a) Give a probabilistic interpretation of the quantity Fg (k) = % (it is the
expectation of... )
(b) Which d-regular graph minimizes the quantity %Fg(k‘) for all k7

(¢c) What can you conclude about the coefficients i, (G) and the partition function
Za(A) for d-regular graphs from the above?

d) Does some d-regular graph maximize the quantity +Fg(k) for all k? (this is an
n
open problem!)

2. Let G be a d-regular graph (not necessarily triangle-free). Pick a random vertex v from
G and pick I according to the hard-core model. For k = 0,...,d let pp = P(JINN (v)| =
k), the probability that v has exactly k occupied neighbors.

(a) Write an expression for the occupancy fraction () in terms of py and A.

(b) Write an expression for the occupancy fraction @g(A) in terms of pq,...,pq, d,
and .

(c) Write a lower bound for py_; in terms of k, pg, d, and A. Is this bound tight for
some d-regular graph G?

(d) Maximize the occupancy fraction subject to the one equality constraint and d — 1
inequality constraints given above. What can you conclude about ag(A) for d-
regular graphs?

(e) (Open problem) Can you used this proof strategy to prove any new results?
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3 Expansion methods and enumeration

An important class of tools in statistical physics are expansion methods. The basic idea of
expansion methods is to study a system as a perturbation of an easy to understand system.
Expansion methods provide a systematic way to understand corrections in approximating a
complicated system by a simple system.

In this lecture we will focus on expansion methods for understanding the hard-core model
at small fugacities A\. In the following lecture we will show that a wide variety of combina-
torial problems can be mapped to multivariate hard-core models and so are amenable to the
expansion techniques discussed here.

3.1 The cluster expansion

The cluster expansion (or Mayer expansion [31]) is a fundamental tool in statistical physics for
understanding systems in the regime of weak interactions. The basic idea is to represent the
logarithm of a partition function in terms of an infinite series whose terms measure deviations
from a system of non-interacting particles.

Consider the multivariate hard-core model with fugacities {\, } ey and partition function

ZeN) =Y [

IeZ(G)vel

The cluster expansion is the multivariate Taylor series for log Z¢ in the variables {\, }yev
around 0. The terms of the cluster expansion admit a convenient combinatorial description
as a sum over connected objects called clusters.

A cluster is an ordered tuple of vertices of G whose induced graph is connected. For
instance in the graph Cy, with vertices labeled vy, v2,va,v4 in cyclic order, (vi,v1,v2) is a
cluster, (vy) is a cluster, (v4,v3,v1) is a cluster, but (v1, v1, v3) is not a cluster since its induced
graph is not connected. The size |T'| of a cluster T" is the length of the tuple.

The Ursell function ¢(H) of a graph H is

1
BH) = —- S (cpHl
) vl =)
spanninTg, connected

The Ursell function is an evaluation of the Tutte polynomial (scaled by the factor 1/|V (H)|!).

For a cluster I, let H(I") be the graph whose vertex set is the set of vertices in I' (with
multiplicities) and with edges between vertices that are neighbors in G and between multiple
copies of the same vertex. For instance if G = Cy as above and I' = (v1, v1, v2,v3) then H(I")
has a triangle formed by (v1, v1,v9) with vy attached to the 4th vertex vs.

The cluster expansion is the formal power series

log Za(A) = > ¢HD) [ - (11)

clusters I vel
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Derivations and applications of the cluster expansion (for both discrete and continuous
systems) can be found in [38| 48, 43| 14] among others.

As a simple example take the graph consisting of a single vertex v with fugacity A\, = .
Then for k > 1 there is a single cluster I'y of size k consisting of k copies of v. The graph

H(T}) is the clique on k vertices, and the Ursell function is ¢(K}) = (*1]);““. This gives (as
a formal power series)

-1 k—&—lAk
log Z7 = 27< )k ,

which is of course the Taylor series for log(1 4+ A).

3.2 Convergence criteria

For the series to be useful, we need to know that it converges, and if so, how fast. The
following criteria of Kotecky and Preiss is easy to check and very versatile.

Theorem 3.1 (Kotecky-Preiss [29]). Consider the multivariate hard-core model on a graph
G with (possibly complex) fugacities A\, v € V. Suppose there are functions a(v) > 0, b(v) >0
so that for allv eV,

S et < q(v). (12)
ueN (v)U{v}
Then the following hold:

1. Zg(X) #0.
2. The cluster expansion for log Za(A) converges absolutely.

The following tail bound holds. Let b(I') = > _rb(v). Then for allt >0,

D

clusters T
b(I)>t

o

(H(T) [T M

vel

<et Z a(v). (13)

veV

4. The following ‘pinned’ bound holds for allv € V.. We say v € N(T') if dist(v, ') < 1.

Yo feHD) [ M| <€ falv). (14)
clusters T uel
veN(T)
b(I)>t

Conclusion 3 follows from 4 by summing over v. Conclusion 2 follows from 3 by taking
t = 0. Conclusion 1 then follows from 2.

Theorem is particularly useful for non-uniform activities. In the next lecture we will
see a general multivariate hard-core model in which vertices come with a notion of ‘size’; the
functions a(-) and b(-) will often be taken proportional to size and the theorem will apply
when activities decay sufficiently fast in the size.

In the case of bounded-degree graphs with uniform activities, Shearer gave a tight bound
for the convergence of the cluster expansion.
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71)A—1

Theorem 3.2 (Shearer [45]). Let G have mazimum degree A and suppose || < (& X

Then Zg(X) # 0 and the cluster expansion converges absolutely.

For a wide-ranging and detailed discussion of this result, extensions, and consequences,
see the paper of Scott and Sokal [43]. In particular, Theorem [3.2] gives a tight bound on
the probabilities of ‘bad events’ with a A-regular dependency graph for which the conclusion
of the Lovéas Local Lemma holds. Scott and Sokal generalize this and show a remarkable
connection between the Local Lemma and cluster expansion: the conclusion of the Local
Lemma holds for a dependency graph G and probabilities p, if and only if Zg(p) # 0 for p
in a polydisc with radii p,.

3.2.1 Singularities on the negative real axis

Both Theorem [3.1]and [3.2)give conditions for the non-vanishing of Z¢ () in a polydisc around
the origin in C. Scott and Sokal [43, Theorem 2.10] (see also Groeneveld [21]) show that for
the (multivariate) hard-core model, the closest zero of Zg to the origin is on the negative
real axis (and this is the zero that controls the applicability of the Local Lemma).

On the other hand, for statistical physics and enumeration we care about positive fugaci-
ties (a singularity on the negative real axis does not mark a phase transition). New techniques
for proving absence of phase transition and for approximating Z algorithmically that make
essential use of positive fugacities have been developed in computer science and applied to
statistical physics models (e.g. [49] 37, 35, 33]).

Question 3.3. Are there any applications of the method of Weitz [{9] to enumeration prob-
lems in combinatorics?

3.3 Consequences of convergence

A convergent cluster expansion gives a series expansion for log Z but by combining the calcu-
lations in Section [I.7] with the cluster expansion we can obtain many probabilistic properties
of the model as well.

In this section we follow Dobrushin [12] (see also [7] for similar calculations).

We first introduce auxiliary variables. Let

Zagnt) = Y AN]er

I€eZ(G) vel

so that Zg(\) = Zg(),0). We can also write

A
to | ty
EG?)\ He ] —Zmne
vel 1€l vel
o ZG()HB
Za(A)
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and so the joint cumulant generating function of the spins o, (indicators that v € I) is given

by
K(t) =log Zg(\, t) —log Zg(A).
Similarly the cumulant generating function of |I| is given by
K(t) =log Zg(\ t) —log Zg(N)

where

= 3 et

1€Z(G)
3.3.1 Cumulants
The cluster expansion of log Zg(A, t) is
log Za(Mt) = > ¢(HID)AMe M
clusters I'

Differentiating and evaluating at ¢ = 0 then gives
r(I) = Y o(HD) T,
clusters I'
and in general

rr(I) = > ¢(H(D))[IFAIT

clusters I

3.3.2 Large deviations

(15)

(16)

Using the cluster expansion we can bound the moment generating function and apply expo-

nential Markov’s inequality to bound the probability of a large deviation in |I.

3.3.3 Joint cumulants and correlation decay

Finally we can obtain the truncated k-point correlation functions by taking partial derivatives

of the cluster expansion:

log Zg(A Z P(H(T))A H el

clusters I vel

Then we have

)
fy = K(v) = a—long)\t‘tO > ¢(H
I'sv
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where m, (I") is the multiplicity of v in I'.

The truncated two-point correlation function is

0? r
A(u,v) = s log Zgt)] g = > S(HT)A my (D)m (1) (17)
I'su,v
This allows us to prove exponential decay of correlations.

Lemma 3.4. Suppose the Kotecky—Preiss condition (Theorem|[3.1]) holds with a(v) =a > 0
and b(v) = b > 0 for all v. Let dist(-,-) denote the graph distance in G. Then there ezists
C = C(a,b) > 0 so that for all u,v € V(G),

|k (u,v)| < Cebrdistun) (18)

Proof. Since a cluster I' is a tuple of vertices whose induced graph is connected, if v and v
belong to I', we must have |I'| > dist(u,v) + 1. More generally,

IT| > dist(u,v) + my(T) +my,(T) — 1.
Then by and we have

Al ) < 3 | XAy (D)m (T)

I'su,w
—b-(dist(u,v)+s+t—1)

for some C' = C(a, b). O

We can prove a similar exponentially small upper bound on truncated k-point correlation
functions. The prefactor Cy will depend on k (and the dependence is exponential). The right
measure of ‘distance’ of subset of k vertices is the the length of the minimum Steiner tree
connecting them (for more see [7]).

3.4 An example

Proposition 3.5. Let G be a A-regular triangle-free graph. Then for A = o(n_1/4),

nA nA(A +1))

Za(\) = (14 0(1))(1 + \)"exp —7)\2 + 5 23 (19)

as n — 00.
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Notice the similarity to Janson’s Inequality. The quantity (ff‘;g\);l is exactly the probability

that we obtain an independent set when we take a random subset of V by including each
v with probability 1%\ independently. Proposition is in fact a direct consequence of a
generalization of Janson’s Inequality due to Mousset, Noever, Panagiotou, and Samotij [34],
that seems to have some similarities to the cluster expansion (see Question [3.6).

Proof of Proposition[3.5. We apply Theorem by taking a(v) =1 and b(v) = w(n) chosen
so that n'/* < e*(™ <« A\~1. We compute
S AR o F el 2 (A 4 1)) = (1)
ueN (v)U{v} ueN (v)U{v}

and so for n large enough the condition (3.1]) is satisfied. We can conclude that

S |SHENAT] < netv) = o(1),

clusters I'

T|>4

and so to determine the asymptotics of Zg(\) we only need to consider clusters of size at

most 3. We list the cluters by size:

e There are n clusters of size 1 (each a single vertex)

e There are n clusters of size 2 consisting of two copies of a single vertex; An clusters of
size 2 consisting of (ordered) edges.

e There are n clusters of size 3 consisting of 3 copies of the same vertex; 3An clusters
of size three with copies copies of a vertex and one of a vertex joined to it by an edge;
3nA(A — 1) clusters consisting of a ‘v’ of three vertices.

Cluster Size Count Ursell function
1 vertex 1 n 1
2 copies of 1 vertex 2 n —1/2
Ordered edge 2 An -1/2
3 copies of 1 vertex 3 n 1/3
An edge with a repeated vertex | 3 3An 1/3
A path of three vertices 3 | 3nA(A-1) 1/6

Table 1: A list of clusters up to size 3 in a regular, triangle-free graph

Putting this together we get
A2 A3 nA n(2A + A(A —-1))

o) AT AL, 3
log Za(A) = nA n2+n3 2)\ + 5 A
The first three terms give the asymptotics of log(1 + A)"™ and so we have
nA nA(A +1))

ZagA\) =1 +o0(1)(1+X)"exp |— 5 puE N

2
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3.5

Summary

The cluster expansion is an infinite series representation of log Z(A), in fact the multi-
variate Taylor series around 0.

Convergence of the cluster expansion has been studied extensively in both statistical
physics (for its connection to proving absence of phase transitions) and combinatorics
(for its connection to the Lovész Local Lemma)

It can also be used to (approximately) enumerate in both combinatorics and computer
science. Statistical physicists are happy with formulas expressed as infinite series. In
combinatorics we might expect

A convergent cluster expansion implies many nice probabilistic properties: correlation
decay, large deviation bounds, Poisson and Gaussian convergence. A spin system with
a convergent cluster expansion can be thought of as a generalization of a collection of
independent random variables.

Question 3.6. What is the relation between the cluster expansion and Janson’s Inequality?
Can the results of [3])] be interpreted in the framework of the (hypergraph) cluster expansion?

3.6

1.

Exercises

Let G be a graph consisting of a single edge.

(a) Compute Zg(A).
(b) Describe the set of clusters of G.

(c) Write down the first few terms of the cluster expansion and then the whole series.

. Let G be a d-regular graph on n vertices. Let |I| be the size of the random independent

set drawn according to the hard-core model on G at fugacity A.

(a) Using the cluster expansion and cumulants prove that if A\ = ¢/n then |I| converges
in distribution to a Poisson random variable as n — oo.

(b) Using the cluster expansion and cumulants prove that if n=' <« A < n~/? then
after centering and scaling |I| converges in distribution to a Gaussian random
variable as n — co. (In fact you can prove it for larger A as well).

. We saw in the first set of exercises that the hard-core model on Z' has no phase

transition. Does the cluster expansion for the hard-core model on the path of n vertices
converge for all \?

. Let G,, and H, be two sequences of d-regular graphs on n vertices. Suppose G, is

triangle-free, while H,, has dn triangles for some § > 0 independent of n.

Zg, (N
Zy, (N

(b) Find some ¢ = &(d, ) > 0 so that for A < £ and n large enough, Zg,, (\) > Zg, (N).

(a) Write down the cluster expansion for log out to clusters of size 4.
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4 Combinatorics at low temperatures

4.1 From low temperature to high temperature

In Figure [5| we see the hard-core model on Z? at two very different values of A. For small \,
we see a dilute system: the occupied sites are sparse and disordered. For large A we see the
opposite picture: the occupied sites are essentially frozen, with occupied odd vertices (colored
blue) or occupied even vertices (colored red) engulfing the system. We see clear evidence of
long-range order.

However, if we focus only on the defects: the red (even) vertices in Figure [5[b) or the
blue (odd) vertices in Figure [5|c) the the picture (at least superficially) looks like the small A
dilute case. While the spins themselves exhibit long-range order, the defects are sparse and
disordered. Putting in another way: while there is long-range order for large A\, perhaps it is
all explained by by the 50/50 chance that we see an even or odd dominated configuration. If
we condition on the event that there are more odd occupied vertices than even, perhaps we
can regain all the nice probabilistic properties of the dilute case (correlation decay etc.).

It turns out that this is indeed the case for a wide variety of lattice models (hard-core,
Ising, Potts on Z? for example), where absence of phase transition at low enough temperatures
(high enough fugacities) can be proved by treating defects from ground states as a new spin
model. This is captured by the framework of Pirogov-Sinai theory [36] in which the basic
objects are contours separating regions of Z¢ dominated by different ground states. For the
applications below, however, the simpler polymers models will suffice to understand defect
distributions.

4.2 Abstract polymer models
At a high level we can describe the multivariate hard-core model in terms of two properties:

1. Configurations are collections of objects satisfying a pairwise geometric exclusion con-
straints (vertices cannot be neighbors in G).

2. The weight (probability) of a configuration factorizes over the objects in the collection.

Abstract polymer models provide a way to completely abstract these two properties, and
they provide a natural setting in which to apply the cluster expansion. Abstract polymer
models were introduced by Kotecky and Preiss [29] following previous definition of lattice
polymer models by Gruber and Kunz [22].

Let C be a finite set of polymers. Fach polymer comes with a real or complex-valued
weight function w,. We equip C with a symmetric compatibility relation and write vy ~ ~/
if polymers v and +' are compatible (and v ~ ~ if they are incompatible). We insist that
v =~y for all 4y € C. The polymer model is defined by the triple (C, ~, w).

The polymer model partition function is

0= > []w

XCC ~eX
compatible
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where the sum is over subsets of pairwise compatible polymers. If the weight functions are
non-negative we can define the associated Gibbs measure with
H'yEX Wy

w(X) = =(C)

4.2.1 Examples

Both of the following examples are subgraph polymer models: polymers are subgraphs of some
host graph G (perhaps decorated by a labeling or coloring) and incompatibility is defined by
distance or connectivity in the host graph.

Example: The multivariate hard-core model on G can be viewed as a polymer model with
C =V(G), u ~ v if dist(u,v) > 1 and w, = A, for all v. Or in other words, the abstract
polymer model is a multivariate hard-core model with vertex set C and graph structure given
by the incompatibility graph.

Example: Consider the g-color ferromagnetic Potts model on a graph G and suppose we
want to model defects from the all ‘red’ ground state. Define polymers to be connected
induced subgraphs of G with vertices of the subgraph colored by the remaining ¢ — 1 non-
red colors (each different coloring of the same subgraph yields a different polymer). Two
polymers v and ' are incompatible if their union is connected. The weight of a polymer is

Wy, = e P10 =BIEp(7)]

where 0.7 is the set of edges from « to v¢ and Ej(y) are the bichromatic edges of 7. Then
we have
Za(a,B) = PO 2

where Zg(q, 8) is the Potts model partition function and = is the polymer model partition
function. Notice that ePlE(G)l is the weight of the ground state (all red configuration), and so
= captures contributions to Zg from deviations from the ground state (the empty polymer
configuration corresponds to the ground state — no defects). Of course we haven’t really
gained anything from this representation — the polymer model includes all the configurations
that are dominated by blue or by green, etc, while we wanted to capture deviations from the
red ground state. We will see below that we can address this by restricting polymers to be
‘small’.

4.3 Cluster expansion for abstract polymer models

The cluster expansion and Kotecky—Preiss condition for convergence fit very nicely with
abstract polymer models.

A cluster T' is a tuple of polymers whose incompatibility graph H(I") is connected. The
cluster expansion is the multivariate Taylor series of log Z(C) in the variables w, around O:

logZ(C)= > oHD) ][] w,- (20)

clusters I' vyel’

The Kotecky—Preiss result can be stated in this setting.
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Theorem 4.1 (Kotecky-Preiss [29]). Consider an abstract polymer model (C,~,w) with (pos-
sibly complex) weights w~. Suppose there are functions a : C — [0,00), b: C — [0,00) so that
for all v € C,

3 Juy 200 < afy). (21)
vy
Then the following hold:
1. E(C) #0.

2. The cluster expansion for log Z(C) converges absolutely.

3. The following tail bound holds. Let b(I') = 3 b(7). Then for all t >0,

S lo@E@) [Jws| <3 al). (22)
clg(srtigstl" yerl vyeC

4. We say v ~ I if there exists v € T with v = ~'. The following ‘pinned’ bound holds for
all veC.

S o) I wy| < e taly). (23)
clusters T'oery y'el’
b()>t

4.3.1 Cumulants and joint cumulants

By following the same procedure described in Section we can compute cumulants and
understand correlations in the abstract polymer model.

4.4 Low temperature expansions

We can use abstract polymer models to study the defects from a given ground state in a
model at low temperature (strong interactions). The general approach involves three steps:

1. Express small deviations from each ground state of a model as an abstract polymer
model; in particular the weight of a configuration of defects must factorize over poly-
mers.

2. Control the polymer models by proving convergence of the cluster expansion.

3. If there is more than one ground state, approximate the partition function of the full
model as a sum over polymer partition functions for each ground state. Prove that the
weight of configurations that are either missed or double counted is small.

The last step is essentially proving that there is phase coexistence in the model; or in computer

science terms, proving that local Markov chains exhibit slow mizing. It is similar to proving
a stability result in combinatorics. Such a step is not always possible: ground states may not
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be sufficiently separated (for example the ground states of the monomer-dimer model on Z¢,
perfect matchings, are not well separated).

If we can carry out these steps we achieve several things:

e A counting result: a good approximation of the partition function Z as the sum of
polymer model partition functions.

e Probabilistic approximation: the Gibbs measure is well approximated by a weighted
mixture of the polymer model Gibbs measures (with the appropriate translation of
defect configurations to spin configurations).

e Conditional correlation decay: while there may be long-range correlations driven by the
multiple ground states, we achieve conditional decay of correlations by conditioning on
being close to one of the ground states.

Next we work through these steps in an example from [24].

4.4.1 Potts model on expander graphs
We continue with the Potts model example. Now we will make two assumptions on G:

1. G has maximum degree A

2. G is an a-edge-expander for some « > 0; that is, for all S C V,|S| < n/2, |0.5| > «a|S].

For instance, the random A-regular graph satisfies these conditions whp.

For large 3, we expect configurations to be dominated by one of the g-colors — we expect
to see sparse, disordered deviations from one of the ¢ monochromatic ground states. We will
control these deviations via polymer models and the cluster expansion.

Fix one of the ¢ colors and call it red. As above we define polymers to be connected
induced subgraphs of G with vertices colored by the remaining ¢ — 1 colors; now we insist
that |y| < n/2 for all polymers . Here |y| denotes the number of vertices of v. We will show
that for 8 large enough as a functions of ¢, A, «, the Kotecky—Preiss condition is satisfied.
To do this we need one lemma from, e.g. [19]:

Lemma 4.2. Let G be a graph of mazimum degree A. Then for every v € V(G), the number
of connected induced subgraphs of size k containing v is at most (eA)*.

This means that for a given polymer ~, the number of polymers +' of size k incompatible
with v is at most (eA(g — 1))*Aly|. The expansion condition gives us an upper bound on
the weight of a polymer:

Wy < efaﬁlvl X

With these two bounds we can verify the Kotecky—Preiss condition. Let a(y) = b() = |v/|.
For a given polymer ~,

Z w’y/ea(,\/)—f—b(y) < Z(SA(Q _ 1))kA|’}/|€_aBk€2k

! oy k>1
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< YA exp [k (3+1log A +log(g — 1) — af)]
E>1

- o 4+210g(qA)
which is at most a(y) = || if § > =542,

Now we need to understand the separation of the ¢ ground states. By using the expansion
properties of G we can show that ¢ - e/1Z(@] . = approximates Z (G) to within e™™ relative
error, that is

(1—e™)q- PP < Zg(q,8) < (1+€™)q - 1P

This takes two steps. The first is to show that when § is large Potts configurations in
which no color has a majority have exponentially small relative weight. This is a simple
consequence of expansion: when there is no majority there must be many bichromatic edges,
and these are penalized heavily for large 8. This partitions configurations into ¢ + 1 subsets;
one for each color plus an addition error class (no majority) that we can neglect.

The next step is to show that the red polymer model partition function approximates the
total weight of the majority red configurations up to an exponentially small relative error.
Every configuration with red majority is capture by the polymer model since fewer than n/2
vertices receive a non-red color. The last step is to show that configurations in which all
non-red connected components are of size at most /2 but which do not have a majority red
have small total weight; this also follows from an expansion argument [24, Lemma 13].

4.5 More examples
4.5.1 Independent sets in the hypercube

Let Qg be the Hamming cube {0,1}¢ with edges between vectors that differ in exactly one

coordinate. The Hamming cube has two maximum independent sets, each of size 2¢9~1: O,

the set of vectors whose coordinates sum to an odd number, and &, the set of vectors whose

coordinates sum to an even number. Since any subset of an independent set is an independent

set, we have a trivial lower bound on the total number of independent sets of the Hamming
. 2d71

cube: i(Qq) >2-2 -1

In a classic result, Korshunov and Sapozhenko determined the asymptotics of i(Qq) [28].

Theorem 4.3 (Korshunov and Sapozhenko). As d — oo,
i(Qa) = (2 +o(1) Ve

Sapozhenko later gave another proof of this result [41] that introduced an influential
variant of the method of graph containers. See also Galvin’s exposition of this result [18].

Galvin [I6] later extended Theorem to the setting of weighted independent sets, the
hard-core model on Qg. He found the asymptotics of Zg,(A\) for A > /2 — 1 and the
asymptotics of the logarithm of Zg,()\) for A = Q(d~/3log d).

Using the cluster expansion we can obtain asymptotics of Zg, () for all fixed A [25]. For
instance, if A > 21/3 — 1,

d 2 3 —-1) — d—1
Zas(N) = (24 o(1)) - exp [; (15) (1 B 2)](1“)2 @)
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We sketch a proof of here. We emphasize that an essential part of the proof is Galvin’s
weighted generalization of Sapozhenko’s graph container lemma [16] Lemma 3.10] which we
will take as a black box. What is remarkably fortuitous is how well this lemma works with the
cluster expansion: along with expansion properties of ()4 it provides exactly what is needed
to verify the Kotecky—Preiss condition.

4.5.2 Independent sets in unbalanced bipartite graphs

This example comes from [7].

4.6 Further applications and open problems
4.6.1 Combinatorics

Sokal [46] (and later Borgs [5]) used abstract polymer models and the cluster expansion to
show that the chromatic polynomial of any graph of max degree A is not zero for ¢ outside
the disc of radius 8A in the complex plane.

Applications to enumeration are more recent. As described in Section the methods
of [25] combine polymer models and the cluster expansion with the graph container method
of Sapozhenko [41] (and extensions by Galvin [16]).

Balogh, Garcia, Li [3] used a similar combination of tools to find the asymptotics of
the number of independent sets in the middle two layers of the hypercube. In their work
the cluster expansion proves useful since the asymptotic formula involves two terms of the
cluster expansion. Jenssen and Keevash [23] study the very general setting of asymptotic
enumeration of the number of homomorphisms from the hypercube (and other even side-
length tori) to fixed graphs. One of their results is finding the asymptotics of the number of
g-colorings of Q4 for all ¢ (following the cases ¢ = 3 by Galvin [I5] and ¢ = 4 by Kahn and
Park [27]). Again the cluster expansion proves very useful: while the asymptotic formulas for
q = 3,4 only involve the first term of the cluster expansion (only the smallest defects matter)
the formulas for ¢ > 5 involve more terms of the cluster expansion and even guessing the
right form would be difficult without the cluster expansion framework.

Question 4.4. Can polymer models and the cluster expansion be used to prove sharper results
in other situations in which the method of graph containers is used? (See [{0] for an exposition
of graph containers).

Can polymers models be used in concert with the method of hypergraph containers [4, [{2]?
4.6.2 Algorithms
4.6.3 Contour models and Pirogov-Sinai theory

The original application of polymer models was in understanding phase diagrams of statistical
mechanics on lattices. Unlike the examples discussed above, Z¢ is not a good expander, and
in many cases polymer models by themselves cannot capture the behavior of deviations from
ground states. Instead what is needed This is captured by Pirogov-Sinai theory [36].
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See [14, Chapter 7] for a nice introduction to these models. See [30] for the classic
application to the random cluster and Potts models.

Question 4.5. Are there any combinatorial applications of the more sophisticated contour
models of Pirogov-Sinai theory?

4.7 Summary

e Abstract polymer models provide a method for understanding collections of interacting
‘defects’ in a probabilistic model. Often these defects are defined geometrically as some
connected objects in a host graph.

e Formally an abstract polymer model is simply a multivariate hard-core model with
fugacities given by weights and graph structure given by the incompatibility relation.
The cluster expansion and Kotecky—Preiss convergence criteria apply to the model,
and so under sufficient decay of the weights, we can obtain asymptotics of the partition
function and obtain detailed probabilistic information about the model.

e Using abstract polymer models we can switch from low temperature to high temperature
and analyze the distribution of defects from ground states using the cluster expansion.

4.8 Exercises

1. Let G = (V,E) be a graph for ¢ > 0,8 > 0 defined the random cluster model, a
probability distribution on subsets of E with partition function given by:

Za(g,8) = Y (¢F = 1)!Alg" D

ACE

where ¢(A) is the number of connected components of the graph G4 = (V, A).

(a) What are the two possible ground states of the model? (Maximum weight config-
urations)

(b) When g is very small what do you expect typical configurations to look like?

(c) Can you write Zg(q,5) in terms of a polymer model that captures defects from
the small 8 ground state?

(d) Suppose G has maximum degree A. Find Sy = Bo(g, A) so that if 5 < [y, the
Kotecky—Preiss condition is satisfied for this polymer model.

38



Acknowledgements

I thank Andrey Kupavskii, Alexander Polyanskii, Yulia Rylova and the Laboratory of Com-
binatorial and Geometric Structures for inviting me to give these lectures. Thanks to all
those who attended the lectures, asked great questions, and gave helpful feedback.

References

[1]

2]

[10]

[11]

M. Ajtai, J. Komlés, and E. Szemerédi. A note on Ramsey numbers. Journal of Com-
binatorial Theory, Series A, 29(3):354-360, 1980.

N. Alon. Independent sets in regular graphs and sum-free subsets of finite groups. Israel
Journal of Mathematics, 73(2):247-256, 1991.

J. Balogh, R. Garcia, and L. Li. Independent sets in middle two layers of Boolean lattice.
arXiv preprint arXiw:2004.03060, 2020.

J. Balogh, R. Morris, and W. Samotij. Independent sets in hypergraphs. Journal of the
American Mathematical Society, 28(3):669-709, 2015.

C. Borgs. Absence of zeros for the chromatic polynomial on bounded degree graphs.
Combinatorics, Probability and Computing, 15(1-2):63-74, 2006.

L. Bregman. Some properties of nonnegative matrices and their permanents. Sowviet
Math. Dokl, 14(4):945-949, 1973.

S. Cannon and W. Perkins. Counting independent sets in unbalanced bipartite graphs.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1456-1466. STAM, 2020.

J. Cutler and A. Radcliffe. The maximum number of complete subgraphs in a graph
with given maximum degree. Journal of Combinatorial Theory, Series B, 104:60-71,
Jan. 2014.

E. Davies, M. Jenssen, W. Perkins, and B. Roberts. Independent sets, matchings, and
occupancy fractions. Journal of the London Mathematical Society, 96(1):47-66, 2017.

E. Davies, M. Jenssen, W. Perkins, and B. Roberts. On the average size of independent
sets in triangle-free graphs. Proceedings of the American Mathematical Society, 146:111—
124, 2018.

E. Davies, M. Jenssen, W. Perkins, and B. Roberts. Tight bounds on the coefficients of
partition functions via stability. Journal of Combinatorial Theory, Series A, 160:1 — 30,
2018.

R. Dobrushin. Estimates of semi-invariants for the Ising model at low temperatures.
Translations of the American Mathematical Society-Series 2, 177:59-82, 1996.

39



[13]

[14]

[15]

[16]

[25]

[26]

[27]

C. Efthymiou, T. P. Hayes, D. Stefankovic, E. Vigoda, and Y. Yin. Convergence of
MCMC and loopy BP in the tree uniqueness region for the hard-core model. SIAM
Journal on Computing, 48(2):581-643, 2019.

S. Friedli and Y. Velenik. Statistical mechanics of lattice systems: a concrete mathemat-
ical introduction. Cambridge University Press, 2017.

D. Galvin. On homomorphisms from the hamming cube to Z. Israel Journal of Mathe-
matics, 138(1):189-213, 2003.

D. Galvin. A threshold phenomenon for random independent sets in the discrete hyper-
cube. Combinatorics, Probability and Computing, 20(1):27-51, 2011.

D. Galvin.  Three tutorial lectures on entropy and counting. arXiv preprint
arXiw:1406.7872, 2014.

D. Galvin. Independent sets in the discrete hypercube. arXiv preprint arXiv:1901.01991,
2019.

D. Galvin and J. Kahn. On phase transition in the hard-core model on Z¢. Combina-
torics, Probability and Computing, 13(02):137-164, 2004.

D. Galvin and P. Tetali. On weighted graph homomorphisms. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, 63:97-104, 2004.

J. Groeneveld. Two theorems on classical many-particle systems. Phys. Letters, 3, 1962.

C. Gruber and H. Kunz. General properties of polymer systems. Communications in
Mathematical Physics, 22(2):133-161, 1971.

M. Jenssen and P. Keevash. Homomorphisms from the torus. arXiv preprint
arXiw:2009.08315, 2020.

M. Jenssen, P. Keevash, and W. Perkins. Algorithms for #BIS-hard problems on ex-
pander graphs. SIAM Journal on Computing, 49(4):681-710, 2020.

M. Jenssen and W. Perkins. Independent sets in the hypercube revisited. Journal of the
London Mathematical Society, 102(2):645-669, 2020.

J. Kahn. An entropy approach to the hard-core model on bipartite graphs. Combina-
torics, Probability and Computing, 10(03):219-237, 2001.

J. Kahn and J. Park. The number of 4-colorings of the hamming cube. Israel Journal
of Mathematics, pages 1-21, 2020.

A. Korshunov and A. Sapozhenko. The number of binary codes with distance 2. Problemy
Kibernet, 40:111-130, 1983.

R. Kotecky and D. Preiss. Cluster expansion for abstract polymer models. Communi-
cations in Mathematical Physics, 103(3):491-498, 1986.

40



[30]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

L. Laanait, A. Messager, S. Miracle-Solé, J. Ruiz, and S. Shlosman. Interfaces in the potts
model i: Pirogov-sinai theory of the fortuin-kasteleyn representation. Communications
in Mathematical Physics, 140(1):81-91, 1991.

J. Mayer and M. Mayer. Statistical Mechanics. John Wiley, 1940.

M. Mezard and A. Montanari. Information, physics, and computation. Oxford University
Press, 2009.

M. Michelen and W. Perkins. Analyticity for classical gasses via recursion. arXiv preprint
arXiv:2008.00972, 2020.

F. Mousset, A. Noever, K. Panagiotou, W. Samotij, et al. On the probability of nonex-
istence in binomial subsets. The Annals of Probability, 48(1):493-525, 2020.

H. Peters and G. Regts. On a conjecture of Sokal concerning roots of the independence
polynomial. The Michigan Mathematical Journal, 68(1):33-55, 2019.

S. A. Pirogov and Y. G. Sinai. Phase diagrams of classical lattice systems. Teoretich-
eskaya i Matematicheskaya Fizika, 25(3):358-369, 1975.

R. Restrepo, J. Shin, P. Tetali, E. Vigoda, and L. Yang. Improved mixing condition
on the grid for counting and sampling independent sets. Probability Theory and Related
Fields, 156(1-2):75-99, 2013.

D. Ruelle. Statistical mechanics: Rigorous results. World Scientific, 1999.

A. Sah, M. Sawhney, D. Stoner, and Y. Zhao. The number of independent sets in an
irregular graph. Journal of Combinatorial Theory, Series B, 138:172-195, 2019.

W. Samotij. Counting independent sets in graphs. European Journal of Combinatorics,
48:5-18, 2015.

A. Sapozhenko. On the number of connected subsets with given cardinality of the
boundary in bipartite graphs. Metody Diskret Analiz, 45:42-70, 1987.

D. Saxton and A. Thomason. Hypergraph containers. Inventiones mathematicae,
201(3):925-992, 2015.

A. D. Scott and A. D. Sokal. The repulsive lattice gas, the independent-set polynomial,
and the Lovész local lemma. Journal of Statistical Physics, 118(5-6):1151-1261, 2005.

J. B. Shearer. A note on the independence number of triangle-free graphs. Discrete
Mathematics, 46(1):83-87, 1983.

J. B. Shearer. On a problem of Spencer. Combinatorica, 5(3):241-245, 1985.

A.D. Sokal. Bounds on the complex zeros of (di) chromatic polynomials and Potts-model
partition functions. Combinatorics, Probability and Computing, 10(1):41-77, 2001.

B. Szegedy. Edge coloring models and reflection positivity. Journal of the American
mathematical Society, 20(4):969-988, 2007.

41



[48] D. Ueltschi. Cluster expansions and correlation functions. Moscow Mathematical Jour-
nal, 4(2):511-522, 2004.

[49] D. Weitz. Counting independent sets up to the tree threshold. In Proceedings of the
thirty-eighth annual ACM symposium on Theory of computing, pages 140-149. ACM,
2006.

[50] C.-N. Yang and T.-D. Lee. Statistical theory of equations of state and phase transitions.
I. Theory of condensation. Physical Review, 87(3):404, 1952.

[51] Y. Zhao. The number of independent sets in a regular graph. Combinatorics, Probability
and Computing, 19(02):315-320, 2010.

[52] Y. Zhao. Extremal regular graphs: independent sets and graph homomorphisms. The
American Mathematical Monthly, 124(9):827-843, 2017.

42



	Fundamentals of statistical physics
	Gibbs measures and partition functions
	Examples
	Motivation for the form of the distribution
	Marginals and correlations
	Decay of correlations

	Phase transitions
	Translation to combinatorics
	Moments, cumulants, and derivatives of the log partition function
	Multivariate partition functions

	Basic tools and tricks
	Summary
	Exercises

	Extremal combinatorics of sparse graphs
	The occupancy fraction of the hard-core model
	Minimizing independent sets for triangle-free graphs
	Max vs. average independent set size?

	Summary
	Exercises

	Expansion methods and enumeration
	The cluster expansion
	Convergence criteria
	Singularities on the negative real axis

	Consequences of convergence
	Cumulants
	Large deviations
	Joint cumulants and correlation decay

	An example
	Summary
	Exercises

	Combinatorics at low temperatures
	From low temperature to high temperature
	Abstract polymer models
	Examples

	Cluster expansion for abstract polymer models
	Cumulants and joint cumulants

	Low temperature expansions
	Potts model on expander graphs

	More examples
	Independent sets in the hypercube
	Independent sets in unbalanced bipartite graphs

	Further applications and open problems
	Combinatorics
	Algorithms
	Contour models and Pirogov-Sinai theory

	Summary
	Exercises


