Locally testable codes with constant rate, distance, and locality

Irit Dinur

based on work with Shai Evra Ron Livne Alexander Lubotzky Shahar Mozes

Error Correcting Codes

A linear error-correcting code is a linear subspace $C \subseteq \{0,1\}^n$

The strings in this subspace are called **codewords** Imagine sending a codeword over a noisy channel which flips a few bits Distance = $min_{x \neq y \in C} \frac{|\{i : x_i \neq y_i\}|}{n}$ Of course, we want to be able to encode many messages using n bits dim(C Rate =

n

- If the codewords are far apart, there is a unique way to recover the codeword

Given a string $w \in \{0,1\}^n$, is $w \in C$? Local testability - decide this question by reading a tiny (but random) part of *w*

<u>Definition</u>: A code C is locally testable with q queries if there is a tester T that has query access to a given word w, reads q randomized bits from w and accepts / rejects, such that

- If $w \in C$ then $\Pr[T \text{ accepts}] = 1$
- If $w \notin C$ then $\Pr[T \text{ rejects}] \geq const \cdot dist(w, C)$

q = the locality of the tester such codes are called "LTCs"

Local Testability

Two measures of distance

1. Hamming distance: how many bits do we need to flip to put $w \in C$ 2. **T-distance**: how many linear constraints ("tests") are not satisfied by w Hamming distance is natural - but may be hard to compute

estimate for Hamming-distance.

- Suppose $C \subseteq \{0,1\}^n$ is defined by linear constraints $t_1, t_2, t_3, \ldots, t_m$ ("local tests")
- Given a string $w \in \{0,1\}^n$, there are two measures of how "far" w is from C
- T-distance is easy to compute / estimate (by selecting a few random constraints)

- LTC (alternative definition): a code where the T-distance is local and gives a good
- Potentially useful: we can test if many errors happened, and ask for retransmission

Historical background

- LTCs were studied implicitly in early works on PCPs (probabilistically checkable proofs) [BlumLubyRubinfeld 1990, BabaiFortnowLund 1990, ..]
- A systematic study initiated by Goldreich and Sudan in 2002. "what is the highest possible rate of an LTC?"
- Sequence of works (BenSasson-Sudan-Vadhan-Wigderson2003, BenSasson-Goldreich-Harsha-Sudan-Vadhan2004, Ben-Sasson-Sudan2005, Dinur2005, Kopparty-Meir-RonZewi-Saraf2017, Gopi-Kopparty-OliveiraRonZewi-Saraf2018) achieved rate = 1/polylog & constant locality+distance
- Are there "c³ LTCs" (constant rate, constant distance, constant locality) ? experts doubt existence. Restricted lower bounds are shown [BenSasson-Harsha-Rashkhodnikova2005, Babai-Shpilka-Stefankovic2005, BenSasson-Guruswami-Kaufman-Sudan-Viderman2010, D.-Kaufman2011]
- High dimensional expansion: local to global features [Garland 1973, Kaufman-Lubotzky 2013, Kaufman-Kazhdan-Lubotzky 2014, Evra-Kaufman 2016, Oppenheim 2017, D.-Kaufman 2017, D.-Harsha-Kaufman-LivniNavon-TaShma 2019, Dikstein-D.-Harsha-Kaufman-RonZewi 2019, Anari-Liu-OveisGharan-Vinzant2019]

Main Result

 $\geq \delta$ and locally testable with q queries. (in fact, relying on previous reductions, $r_{,\delta} \rightarrow "GV bound"$)

Panteleev & Kalachev [very recently]: Similar result, almost identical construction, (+quantum LDPC codes!) based on "balanced product" of Breuckmann & Eberhardt

- For every 0 < r < 1 there exist $\delta > 0$ and $q \in \mathbb{N}$ and an explicit construction of an infinite family of error-correcting codes $\{C_n\}_n$ with rate $\geq r$, distance

- 1. Expander codes
- 2. New: left-right Cayley complex, "a graph-with-squares"
- 3. Define the code on the complex / graph-with-squares
- 4. Properties of the code

Plan of talk

Expander Codes [Sipser & Spielman 1996]

 $C[G, C_0] = \{f : E \to \{0, 1\} : f|_{edges(v)} \in C_0 \ \forall v\}$

Expander Codes as Tanner Codes

bits C_0 constraints

factor graph

Expander Codes, one level up

Expander Codes, one level up

Left-right Cayley Complex "a graph with squares"

Let G be a finite group, Let $A \subset G$ be closed under taking inverses, i.e. such that $a \in A \rightarrow a^{-1} \in A$ Cay(G,A) is a graph with vertices G, and edges $E_A = \{\{g, ag\} : g \in G, a \in A\}$

Left-right Cayley Complex "a graph with squares"

Let G be a finite group, Let $A, B \subset G$ be closed under taking inverses

Left-right Cayley Complex "a graph with squares"

Let G be a finite group, Let $A, B \subset G$ be closed under taking inverses Cay(G,A) is a graph with vertices G, and edges $E_A = \{\{g, ag\} : g \in G, a \in A\}$ (left *) Cay(G,B) is a graph with vertices G, and edges $E_R = \{\{g, gb\} : g \in G, b \in B\}$ (right *)

Left-right Cayley Complex "a graph with squares"

Let G be a finite group, Let $A, B \subset G$ be closed under taking inverses Cay(G,A) is a graph with vertices G, and edges $E_A = \{\{g, ag\} : g \in G, a \in A\}$ (left *) Cay(G,B) is a graph with vertices G, and edges $E_R = \{\{g, gb\} : g \in G, b \in B\}$ (right *)

Each square can have 4 roots,

 $[a,g,b] = \{ (a,g,b), (a^{-1},ag,b), (a^{-1},agb,b^{-1}), (a,gb,b^{-1}) \}$

This square naturally contains

- The edges {g,ag}, {g,gb}, {gb,agb}, {ag,agb},
- The vertices g,ag,gb,agb

The set of squares is $X(2) = \{[a, g, b] : g \in G, a \in A, b \in B\} = A \times G \times B / \sim$

- Let G be a finite group, and let $A, B \subset G$ be closed under taking inverses.
- The left-right Cayley complex Cay²(A,G,B) has
- Vertices G
- Edges $E_A \cup E_B$

 $E_A = \{\{g, ag\} : g \in G, a \in A\}, E_B = \{\{g, gb\} : g \in G, b \in B\}$

Squares A x G x B / ~

We say that Cay²(A,G,B) is a λ -expander if Cay(G,A) and Cay(G,B) are λ -expanders.

Cayley complexes that are λ -expanders.

Left-right Cayley Complex Cay²(A,G,B)

Lemma: For every $\lambda > 0$ there are explicit infinite families of bounded-degree left-right

Left-right Ca "a graph Squares touching the edge $\{g,ag\}_{ab}$ are naturally identified with B $b \mapsto [a,g,b]$

Squares touching the edge {g,gb}

are naturally identified with A

$$a \mapsto [a, g, b]$$

9

Left-right Cayley Complex "a graph with squares"

* it is a bijection assuming $\forall a, b, g, g^{-1}ag \neq b$

The Code

- Let Cay²(A,G,B) be a left-right Cayley complex.
- Fix base codes $C_A \subseteq \{0,1\}^A$, $C_B \subseteq \{0,1\}^B$ (assuming |A| = |B| = d we can take one base code $C_0 \subseteq \{0,1\}^d$ and let $C_A, C_B \simeq C_0$)

Define a code CODE = $C[G, A, B, C_A, C_B]$:

- The codeword bits are placed on the squares
- Each edge requires that the bits on the squares around it are in the base code

 $CODE = \{f: Squares \rightarrow \{0,1\} : \forall a, g, b, \}$

Rate: $\geq 4r_0 - 3$ [calc: #squares - #constraints] Distance: $\geq \delta_0^2(\delta_0 - \lambda)$ [easy propagation argument]

$$f([\cdot, g, b]) \in C_A, f([a, g, \cdot]) \in C_B\}$$

Local views are tensor codes

- <u>Claim</u>: Fix fecode. For each $g \in G$, $f([\cdot, g, \cdot]) \in C_A \otimes C_B$ <u>Theorem</u>: Assume Cay²(A,G,B) is a λ -expander, and $C_A \otimes C_B$ is ρ -robustly testable. If $\lambda < \delta_0 \rho/5$, then $C[G, A, B, C_A, C_B]$ is locally
- testable.
- The tester is as follows:
 - 1. Select a vertex g uniformly,
 - 2. Read f on all $|A| \cdot |B|$ squares touching g, namely $f([\cdot, g, \cdot])$.
 - 3. Accept iff this belongs to $C_A \otimes C_B$

Then Pr $[f([\cdot, g, \cdot]) \notin C_A \otimes C_R) \ge const \cdot dist(f, C[G, A, B, C_A, C_R])$ $g \in G$

 $CODE = \{f: Squares \rightarrow \{0,1\} : \forall a, g, b, f([\cdot, g, b]) \in C_A, f([a, g, \cdot]) \in C_B\}$

Proof of local-testability

Start with $f: Squares \rightarrow \{0,1\}$ and find $f' \in C$, $rej(f) \ge dist(f, f') \cdot const$

ALG "self-correct":

1. Init: Each $g \in G$ finds $T_g \in C_A \otimes C_B$ closest to $f([\cdot, g, \cdot])$

[define a progress measure $\Phi = \#$ dispute edges]

- 2. Loop: If g can change T_g and reduce Φ then do it
- 3. End: If $\Phi = 0$ let $f'([a, g, b]) = T_g(a, b)$ and output f', If $\Phi > 0$ quit

- steps $\leq \Phi \approx$ rej(f)
- If $\Phi = 0$ then $rej(f) \ge dist(f, f') \cdot const$
- If $\Phi > 0$ then $\Phi > 0.1$ so $rej(f) \ge dist(f, f') \cdot 0.1$

Proof of local-testability

If ALG "self-correct" is stuck then rej (f) > 0.1

- If g,g' are in dispute, there must be many squares on {g,g'} with further dispute edges
- Can try to propagate, but, they all might be clumped around g
- But then g's neighbors all agree, so there must have been a better choice for T_g (using the LTCness of tensor codes)
- Random walk edge—>square—>edge + expansion ==> dispute set is large

High dimensional expansion

circulating a number of years.

globablize

Vinzant2019]

- The idea of using a higher-dimensional complex instead of a graph for LTCs has been
- HDXs exhibit local-to-global features: prove something locally and then use expansion to
- [Garland 1973, Kaufman-Kazhdan-Lubotzky2014, Evra-Kaufman2016, Oppenheim2017, D.-Kaufman2017, D.-Harsha-Kaufman-LivniNavon-TaShma2018, Anari-Liu-OveisGharan-
- Dikstein-D.-Harsha-RonZewi2019 Locally testable codes on HDX can "theoretically" work
- How to "instantiate" this? ... we worked on the Lubotzky-Samuels-Vishne complexes (quotients of BT buildings), and have conjectured base codes, but no proof of local LTCness

Can such ideas be used for constructing PCPs?

• Can these codes be made practical?

...questions