Locally testable codes
with constant rate, distance, and locality




Error Correcting Codes

A linear error-correcting code is a linear subspace C C {0,1}" °

The strings in this subspace are called codewords
Imagine sending a codeword over a noisy channel which flips a few bits

It the codewords are far apart, there is a unique way to recover the codeword

| {0 x; # y;} ]

n

Distance = min, ¢

Of course, we want to be able to encode many messages using n bits
dim(C)

n

Rate =



L ocal Testability

Given a stringw € {0,1}",iswe C?

Local testability - decide this question by reading a tiny (but
random) part of w

Detinition: A code C is locally testable with g queries if there is a

tester T that has query access to a given word w, reads g

randomized bits from w and accepts / rejects, such that
e I[f w € C then Pr[T accepts] = 1

o If w¢& C then Pr{T rejects] > const - dist(w, C)
d = the locality of the tester

such codes are called “"LTCs”




Two measures of di

Suppose C C {0,1}" is defined by linear constraints ¢, t,, fs, ..., t,, (“local tests”)

Given a stringw € {0,1}", there are two measures of how “far” w is from C

1. Hamming

distance: how many bits do we need to flip to putw € C

2. T-distance: how many linear constraints (“tests”) are not satistied by w

Hamming distance is natural - but may be hard to compute

T-distance is

LTC (alternati

estimate for

easy to compute / estimate (by selecting a few random constraints)

ve definition): a code where the T-distance is local and gives a good

Hamming-distance.

Potentially useful: we can test it many errors happened, and ask for retransmission



Historical backo

LTCs were studied implicitly in early works on PCPs (probabilistically checkable
proofs) [BlumLubyRubinfeld 1990, BabaiFortnowLund 1990, ..]

A systematic study initiated by Goldreich and Sudan in 2002.
"what is the highest possible rate of an LTC?”

Sequence ot works (BenSasson-Sudan-Vadhan-Wigderson2003, BenSasson-Goldreich-Harsha-Sudan-
Vadhan2004, Ben-Sasson-Sudan2005, Dinur2005, Kopparty-Meir-RonZewi-Saraft2017, Gopi-Kopparty-OliveiraRonZewi-

saraf2018) achieved rate = 1/polylog & constant locality+distance

Are there "c3 LTCs"” (constant rate, constant distance, constant locality) ? experts

dOUbt existence. Restricted ‘OWGI’ bOUﬂdS are ShOWﬂ [BenSasson-Harsha-Rashkhodnikova2005,
Babai-Shpilka-Stefankovic2005, BenSasson-Guruswami-Kaufman-Sudan-Viderman2010, D.-Kaufman2011]

High dimensional expansion: local to global tfeatures Garland 1973, Kaufman-Lubotzky 2013,

Kauftman-Kazhdan-Lubotzky 2014, Evra-Kautman 2016, Oppenheim 2017, D.-Kaufman 2017, D.-Harsha-Kaufman-
LivniNavon-TaShma 2019, Dikstein-D.-Harsha-Kaufman-RonZewi 2019, Anari-Liu-OveisGharan-Vinzant2019]




[
Mair

For every 0 < r < 1 there exist 6 > 0 and g € N and an explicit construction
of an infinite family of error-correcting codes {C, }, with rate > r, distance

> 0 and locally testable with g queries.

(in fact, relying on previous reductions, r,0 —> "GV bound”)

Panteleev & Kalachev [very recently]:
Similar result, almost identical construction, (+quantum LDPC codes!)

based on “balanced product” of Breuckmann & Eberhardt
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. Expander codes

New: left-right Cayley complex, “a graph-with-squares”

Detine the code on the complex / graph-with-squares

. Properties of the code



Expander Codes [Sipser & Spielman 1996]
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d-reqular expander graph G = (V, E)

ClG,Cyl=1{f: E— {0,1}: f\edges(v)



Expander Codes as Tanner Codes

Edge Verticeg
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hitg C, congtrainte

factor graph



Expander Codes, one level up

Squareg Edges Verticeg
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| eft-right Cayley Complex

“a graph with squares’

Let G be a finite group,
Let A C G be closed under taking inverses, i.e. suchthata €A — a '€ A

Cay(G,A) is a graph with vertices G, and edges £, = {{g,ag} : g € G,a € A}
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| eft-right Cayley Complex

“a graph with squares’
(a1, agh,b™")

QJL

Each triple a € A, g € G, b € B define a rooted square (a, g, b)
(a™',ag,b) “3 J" (a,gb,b™")
Each square can have 4 roots,

[a,g,b] = { (a,8.b), (a',ag,b), (a ' agh,b™"), (a,gb,b™")}

This square naturally contains

(a, g, b)

* The edges {g,aq}, {g,gb}, {gb,agb}, {ag,agb},
e The vertices g,ag,gb,agb

The set of squares is X(2) = {[a,g,b] : g€ G,a€eA,be B} = AXGXB/ ~



| eft-right Cayley Complex Cay2(A,G,B)

Let G be a finite group, and let A, B C G be closed under taking inverses.
The left-right Cayley complex Cay?(A,G,B) has
* Vertices 3
e Edges [, U Ej
E,={{g,ag} :g€G,ac A}, Ez=1{{g,8b}:g€G,beE B}
 SquaresAxGxB/~
We say that Cay?(A,G,B) is a A-expander it Cay(G,A) and Cay(G,B) are A-expanders.

Lemma: For every 4 > 0 there are explicit infinite tamilies ot bounded-degree left-right

Cayley complexes that are A-expanders.



| eft-right Cayley Complex

“a graph with squares’

gb
Squares touching the edge {g,aglsL

agbz
\QJLL

ale

are naturally identified with B 3%, |
b la,g,b]

Squares touching the edge {g,gb}

are naturally identified with A Jb ogb a9
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A vertex g hag [Al + (B neighbora
For each a € A, b € B there ig one square touching g,

90 there ig a natural bijection” (a, b) ~ [a, g, b]

*itie g bijeoﬁon assuming Va, b, g, g lag # b



| eft-right Cayley Complex

“a graph with squares’

sk, e— 3% A vertex g hag Al + (Bl neighborg
Squares touching the edge 19,a0lgb_ ool - ! B there i touchi
= B there ig one gquare touching g,

are naturally identitied with B ak, N
bijeoﬁon" (a,b) — [a, g, b]

Squares touching the edge {g,gb}

are naturally identified with A Jb

awla,g,b]

*itie 4 bijeaﬁon asauming Va, b, g, g lag # b



The C

Let be a left-right Cayley complex.

Fix base codes C, C {0,1 W4 Cp C {0,1}7 (assuming

and let )

Define a code COD

- = C[G, A, B, Cy, Cp):

* The codeword bits are placed on the squares

we can take one base code

\

e Each edge requires that the bits on the squares around it are in the base code

CODE = {f: Squares — {0,1} : Va,g,b, f(-.,g.b]) € Cy, f(a,g,-]) € Cy}

Rate: > 4ry— 3

[ calc: #squares -

constraints |

Distance: > 83(5, —4) [easy propagation argument]




| ocal views are tensor codes

Claim: Fix feCODE. Foreachg e G, f([-,g,-]) € C, ® Cp B

Theorem: Assume Cay?(A,G,B) is a A-expander, and C, ® Cyis p

-robustly testable. It 4 < §yp/3, then C[G, A, B, C4, Cy] is locally A

testable.

The tester is as follows:
1. Select a vertex g uniformly,
2. Read f on all |A]|-|B|squares touching g, namely f([:-,g,]).

3. Accept iff this belongs to (C, ® Cy

Then Pr [f([-,g,-]) & Cy, ® Cp) > const - dist(f, C[G, A, B,C,, Cyl)
gelC

CODE = {f: Squares — {0,1} : Va,g,b, f(-,g,b]) € Cy, fla,g, - ]) € Cg)




Proof of local-testal

Start with f: Squares — {0,1} and find f' € C, rej(f) > dist(f, f) - const

ALG “self-correct”

e steps <D =~ rej(f)
1. Init: Each g€ G finds 7T, € (4, ® Cp closest to

f([aga]) ® H:(I):Otheﬂ

. . ,
[ define a progress measure @ = # dispute edges ] rej(f) = dist(f, f') - const

o If ® > 0 then ® > 0.1 so
rej(f) > dist(f, f) - 0.1

2. Loop: If g can change Tg and reduce @ then do it

3.End: If ® =0 let f’([a,g,b])=Tg(a,b) and output f,
If & >0 quit



Proot of local-testability

If ALG “self-correct” is stuck thenrej (f) > 0.1

* |f g,g’ are in dispute, there must be many squares on {g,g’} with i\i \

further dispute edges

» Can try to propagate, but, they all might be clumped around g 9 °‘9=3'

e But then g's neighbors all agree, so there must have been a
better choice for T, (using the LTCness of tensor codes)

* Random walk edge—>square—>edge + expansion ==>
dispute set is large




High dimen

The idea of using a higher-dimensional complex instead of a graph for LTCs has been
circulating a number of years.

HDXs exhibit local-to-global teatures:

Garland 1973, Kautman-Kazhdan-Lubotzky2014, Evra-Kautman2016, Oppenheim2017, D.-
Kautman2017, D.-Harsha-Kautman-LivniNavon-TaShma2018, Anari-Liu-OveisGharan-
Vinzant2019]

Dikstein-D.-Harsha-RonZewi2019 - Locally testable codes on HDX can “theoretically” work

How to"instantiate” this? ...we worked on the Lubotzky-Samuels-Vishne complexes

(quotients ot BT buildings), and have conjectured base codes, but no proot of local LTCness



e Can such ideas be used for constructing PCPs?

e Can these codes be made practical?



