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Error Correcting Codes

A linear error-correcting code is a linear subspace 


The strings in this subspace are called codewords


Imagine sending a codeword over a noisy channel which flips a few bits


If the codewords are far apart, there is a unique way to recover the codeword


Distance = 


Of course, we want to be able to encode many messages using n bits


Rate = ,       


C ⊆ {0,1}n

minx≠y∈C
|{i : xi ≠ yi} |

n

dim(C)
n



Local Testability

Given a string , is  ?


Local testability - decide this question by reading a tiny (but 
random) part of  


Definition: A code C is locally testable with q queries if there is a 
tester T that has query access to a given word , reads q 
randomized bits from  and accepts / rejects, such that


• If  then Pr[T accepts] 


• If  then Pr[T rejects] 


q = the locality of the tester


such codes are called “LTCs”

w ∈ {0,1}n w ∈ C

w

w
w

w ∈ C = 1

w ∉ C ≥ const ⋅ dist(w, C)



Two measures of distance

Suppose  is defined by linear constraints  (“local tests”)


Given a string , there are two measures of how “far” w is from 


1. Hamming distance: how many bits do we need to flip to put  


2. T-distance: how many linear constraints (“tests”) are not satisfied by 


Hamming distance is natural - but may be hard to compute


T-distance is easy to compute / estimate (by selecting a few random constraints)


LTC (alternative definition): a code where the T-distance is local and gives a good 
estimate for Hamming-distance.


Potentially useful: we can test if many errors happened, and ask for retransmission

C ⊆ {0,1}n t1, t2, t3, …, tm

w ∈ {0,1}n C

w ∈ C

w



• LTCs were studied implicitly in early works on PCPs (probabilistically checkable 
proofs) [BlumLubyRubinfeld 1990, BabaiFortnowLund 1990, ..]


• A systematic study initiated by Goldreich and Sudan in 2002.                          
“what is the highest possible rate of an LTC?”


• Sequence of works (BenSasson-Sudan-Vadhan-Wigderson2003, BenSasson-Goldreich-Harsha-Sudan-

Vadhan2004, Ben-Sasson-Sudan2005, Dinur2005, Kopparty-Meir-RonZewi-Saraf2017, Gopi-Kopparty-OliveiraRonZewi-

Saraf2018) achieved rate = 1/polylog & constant locality+distance


• Are there “c3 LTCs” (constant rate, constant distance, constant locality) ? experts 
doubt existence. Restricted lower bounds are shown [BenSasson-Harsha-Rashkhodnikova2005, 

Babai-Shpilka-Stefankovic2005, BenSasson-Guruswami-Kaufman-Sudan-Viderman2010, D.-Kaufman2011]


• High dimensional expansion: local to global features [Garland 1973, Kaufman-Lubotzky 2013, 

Kaufman-Kazhdan-Lubotzky 2014, Evra-Kaufman 2016, Oppenheim 2017, D.-Kaufman 2017, D.-Harsha-Kaufman-
LivniNavon-TaShma 2019, Dikstein-D.-Harsha-Kaufman-RonZewi 2019, Anari-Liu-OveisGharan-Vinzant2019]

Historical background 



For every  there exist  and  and an explicit construction 
of an infinite family of error-correcting codes  with rate , distance 

 and locally testable with q queries.


(in fact, relying on previous reductions, r,  —> “GV bound”)

0 < r < 1 δ > 0 q ∈ ℕ
{Cn}n ≥ r

≥ δ

δ

Main Result

Panteleev & Kalachev [very recently]: 


Similar result, almost identical construction, (+quantum LDPC codes!)


based on “balanced product” of Breuckmann & Eberhardt



1. Expander codes 


2. New: left-right Cayley complex, “a graph-with-squares”


3. Define the code on the complex / graph-with-squares


4. Properties of the code 

Plan of talk



Expander Codes [Sipser & Spielman 1996]

d-regular expander graph 

good base code 

on d bits

C0

G = (V, E)

 C[G, C0] = {f : E → {0,1} : f |edges(v) ∈ C0 ∀v}



Expander Codes as Tanner Codes

factor graph

Edges Vertices

 constraintsC0bits



Expander Codes, one level up

factor graph

Edges VerticesSquares

 constraintsC0bits dependencies
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Left-right Cayley Complex
 “a graph with squares”

Let G be a finite group,


Let  be closed under taking inverses, i.e. such that 


Cay(G,A) is a graph with vertices G, and edges  

A ⊂ G a ∈ A → a−1 ∈ A

EA = {{g, ag} : g ∈ G, a ∈ A}
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A, B ⊂ G
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Left-right Cayley Complex
 “a graph with squares”

Each triple  define a rooted square 


Each square can have 4 roots,





This square naturally contains 


• The edges {g,ag}, {g,gb}, {gb,agb}, {ag,agb},


• The vertices g,ag,gb,agb


The set of squares is 

a ∈ A, g ∈ G, b ∈ B (a, g, b)

[a, g, b] = { (a, g, b), (a−1, ag, b), (a−1, agb, b−1), (a, gb, b−1) }

X(2) = {[a, g, b] : g ∈ G, a ∈ A, b ∈ B} = A × G × B / ∼

(a, gb, b−1)

(a−1, agb, b−1)

(a−1, ag, b)

(a, g, b)



Left-right Cayley Complex Cay2(A,G,B) 

Let G be a finite group, and let  be closed under taking inverses. 


The left-right Cayley complex Cay2(A,G,B) has


• Vertices G


• Edges   


• Squares A x G x B / ~


We say that Cay2(A,G,B) is a -expander if Cay(G,A) and Cay(G,B) are -expanders.


Lemma: For every  there are explicit infinite families of bounded-degree left-right 
Cayley complexes that are -expanders.

A, B ⊂ G

EA ∪ EB

λ λ

λ > 0
λ

EA = {{g, ag} : g ∈ G, a ∈ A}, EB = {{g, gb} : g ∈ G, b ∈ B}



Left-right Cayley Complex
 “a graph with squares”

Squares touching the edge {g,ag} 


are naturally identified with B


Squares touching the edge {g,gb} 


are naturally identified with A

a ↦ [a, g, b]

b ↦ [a, g, b]

A vertex g has |A| + |B| neighbors


For each  there is one square touching g,


so there is a natural bijection* 


* it is a bijection assuming 

a ∈ A, b ∈ B

(a, b) ↦ [a, g, b]

∀a, b, g, g−1ag ≠ b
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The Code

Let Cay2(A,G,B) be a left-right Cayley complex. 


Fix base codes   (assuming |A| = |B| = d we can take one base code  

and let )


Define a code CODE = :


• The codeword bits are placed on the squares


• Each edge requires that the bits on the squares around it are in the base code 


Rate:              [ calc: #squares - #constraints ]


Distance:     [easy propagation argument]

CA ⊆ {0,1}A, CB ⊆ {0,1}B C0 ⊆ {0,1}d

CA, CB ≃ C0

C[G, A, B, CA, CB]

≥ 4r0 − 3

≥ δ2
0(δ0 − λ)

CODE = {f : Squares → {0,1} : ∀a, g, b, f([ ⋅ , g, b]) ∈ CA, f([a, g, ⋅ ]) ∈ CB}



Local views are tensor codes

Claim: Fix f CODE. For each ,   


Theorem: Assume Cay2(A,G,B) is a -expander, and  is 
-robustly testable. If , then  is locally 
testable. 


The tester is as follows:


1. Select a vertex g uniformly,


2. Read f on all squares touching g, namely . 


3. Accept iff this belongs to 


Then

∈ g ∈ G f([ ⋅ , g, ⋅ ]) ∈ CA ⊗ CB

λ CA ⊗ CB ρ
λ < δ0ρ/5 C[G, A, B, CA, CB]

|A | ⋅ |B | f([ ⋅ , g, ⋅ ])

CA ⊗ CB

Pr
g∈G

[ f([ ⋅ , g, ⋅ ]) ∉ CA ⊗ CB) ≥ const ⋅ dist( f, C[G, A, B, CA, CB])

A

B

∈ CB

∈
C

A

CODE = {f : Squares → {0,1} : ∀a, g, b, f([ ⋅ , g, b]) ∈ CA, f([a, g, ⋅ ]) ∈ CB}



Proof of local-testability

Start with  and find 
f : Squares → {0,1} f′￼ ∈ C, rej( f ) ≥ dist( f, f′￼) ⋅ const

ALG “self-correct”:


1. Init: Each  finds  closest to 




[ define a progress measure  = # dispute edges ]


2. Loop: If g can change  and reduce  then do it


3. End: If  let  and output ,                     

If  quit

g ∈ G Tg ∈ CA ⊗ CB
f([ ⋅ , g, ⋅ ])

Φ

Tg Φ

Φ = 0 f′￼([a, g, b]) = Tg(a, b) f′￼

Φ > 0

• steps      rej(f)


• If  then



• If  then  so 
 

≤ Φ ≈

Φ = 0
rej( f ) ≥ dist( f, f′￼) ⋅ const

Φ > 0 Φ > 0.1
rej( f ) ≥ dist( f, f′￼) ⋅ 0.1



If ALG “self-correct” is stuck then rej ( f )  > 0.1

• If g,g’ are in dispute, there must be many squares on {g,g’} with 
further dispute edges


• Can try to propagate, but, they all might be clumped around g


• But then g’s neighbors all agree, so there must have been a 
better choice for  (using the LTCness of tensor codes)


• Random walk edge—>square—>edge + expansion ==> 
dispute set is large

Tg

Proof of local-testability



High dimensional expansion

The idea of using a higher-dimensional complex instead of a graph for LTCs has been 
circulating a number of years.


HDXs exhibit local-to-global features: prove something locally and then use expansion to 
globablize


[Garland 1973, Kaufman-Kazhdan-Lubotzky2014, Evra-Kaufman2016, Oppenheim2017, D.-
Kaufman2017, D.-Harsha-Kaufman-LivniNavon-TaShma2018, Anari-Liu-OveisGharan-
Vinzant2019]


Dikstein-D.-Harsha-RonZewi2019 - Locally testable codes on HDX can “theoretically” work


How to“instantiate” this? …we worked on the Lubotzky-Samuels-Vishne complexes 
(quotients of BT buildings), and have conjectured base codes, but no proof of local LTCness



…questions

• Can such ideas be used for constructing PCPs?


• Can these codes be made practical?


