
Covering the hypercube with geometry and
algebra

Yuval Wigderson (Stanford)
Joint with Lisa Sauermann

April 1, 2021

ἐζητεῖτο δὲ καὶ παρὰ τοῖς γεωμέτραις… καὶ ἐκαλεῖτο τὸ τοιοῦτον πρόβλημα κύβον
διπλασιασμός… πάντων δὲ διαπορούντων ἐπὶ πολὺν χρόνον πρῶτος Ἱπποκράτης ὁ Χῖος…
τὸ ἀπόρημα αὐτῷ εἰς ἕτερον οὐκ ἔλασσον ἀπόρημα κατέστρεφεν.

This was investigated by the geometers… and they called this problem “duplication of a
cube”… And, after they were all puzzled by this for a long time, Hippocrates of Chios…
converted the puzzle into another, no smaller puzzle.

Eratosthenes of Cyrene (translated by Reviel Netz)
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Covering the hypercube by skew hyperplanes

Question
What is the minimum number of skew
hyperplanes needed to cover the
vertices of the hypercube {0,1}n?

Skew: all normal vector coordinates ̸= 0
Folklore, Yehuda–Yehudayoff 2021:

cn0.51 ≤ #(skew hyperplanes) ≤ n.

Open problem: Improve either bound.
This has connections to certain lower bounds in complexity theory.
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Covering the hypercube minus a point

Question
What is the minimum number of
hyperplanes needed to cover the
vertices of the hypercube {0,1}n

except 0⃗ (without covering 0⃗)?
There are at least 2 ways of doing it with n hyperplanes:

x1 = 1, x2 = 1,…, xn = 1 and
n∑
i=1

xi = 1, …,
n∑
i=1

xi = n.

Theorem (Alon–Füredi 1993)
At least n hyperplanes are needed to cover {0,1}n \ {0⃗}.

This answers a question of Komjáth arising in infinite Ramsey theory.
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The Alon–Füredi theorem: geometry vs. algebra

Theorem (Alon–Füredi 1993)
At least n hyperplanes are needed to cover {0,1}n \ {0⃗}.

The statement is geometric, but all known proofs are algebraic.

Theorem (Alon–Füredi 1993)
Let P ∈ ℝ[x1,…, xn] be a polynomial with zeroes at all points in
{0,1}n \ {0⃗}, but such that P(0⃗) ̸= 0. Then degP ≥ n.

This is a stronger statement: any hyperplane cover can be
converted into a polynomial cover by multiplying together all
defining equations of the hyperplanes.
Luckily, the geometric and algebraic questions have the same
answer!
This is a special case of Alon’s Combinatorial Nullstellensatz, which
has many other applications in combinatorics.
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Proof of the Alon–Füredi theorem

Theorem (Alon–Füredi 1993)
Let P ∈ ℝ[x1,…, xn] be a polynomial with zeroes at all points in
{0,1}n \ {0⃗}, but such that P(0⃗) ̸= 0. Then degP ≥ n.

Step 0: Assume WLOG that P(0⃗) = 1.
Step 1: Convert P to reduced form P: replace each xmi by xi.
Note that degP ≤ degP and P agrees with P on {0,1}n.
Step 2: Every function {0,1}n → ℝ has a unique representation as a
reduced polynomial.
This follows from dimension counting.
Step 3: One representation of the function P is as

P̃ = (1− x1)(1− x2) · · · (1− xn),

which is reduced. So P = P̃, and degP ≥ deg P̃ = n.
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Covering with multiplicity
Question (Clifton–Huang 2020)
What is the minimum number of hyperplanes needed to cover
every point of {0,1}n \ {0⃗} at least k times (without covering 0⃗)?

k = 2: n+ 1 hyperplanes are necessary
and sufficient.

Theorem (Clifton–Huang 2020)
For fixed n and k → ∞,(

1+
1
2 + · · · + 1

n + o(1)
)
k

hyperplanes are necessary and sufficient.

From now on: k is fixed and n → ∞.
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A simple upper bound
Question (Clifton–Huang 2020)
What is the minimum number of hyperplanes needed to cover
every point of {0,1}n \ {0⃗} at least k times (without covering 0⃗)?

Start with the n hyperplanes
x1 = 1, x2 = 1, … xn = 1.

A vector with t ones is covered t times. Add the hyperplanes
n∑
i=1

xi = 1︸ ︷︷ ︸
k−1 times

,
n∑
i=1

xi = 2︸ ︷︷ ︸
k−2 times

, …
n∑
i=1

xi = k − 1︸ ︷︷ ︸
1 time

.

This uses n+ (k − 1) + (k − 2) + · · · + 1 = n+
(k
2
)
hyperplanes.

Conjecture (Clifton–Huang 2020)
n+

(k
2
)
hyperplanes are also necessary for n sufficiently large.
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Lower bounds
Question (Clifton–Huang 2020)
What is the minimum number of hyperplanes needed to cover
every point of {0,1}n \ {0⃗} at least k times (without covering 0⃗)?

Lower bound Upper bound: n+
(k
2
)

k = 1 n n
k = 2 n+ 1 n+ 1
k = 3 n+ 3 n+ 3
k ≥ 4 n+ k+ 1 n+

(k
2
)

These statements are geometric, but all known proofs are algebraic.

Question
What is the minimum degree of a polynomial P ∈ ℝ[x1,…, xn] with
zeroes of multiplicity ≥ k at all points in {0,1}n \ {0⃗}, but P(0⃗) ̸= 0?

This is a more general notion: any hyperplane cover yields such a P.
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Algebraically covering with multiplicities

Question
What is the minimum degree of a polynomial P ∈ ℝ[x1,…, xn] with
zeroes of multiplicity ≥ k at all points in {0,1}n \ {0⃗}, but P(0⃗) ̸= 0?

Recall: P has a zero of multiplicity ≥ k at a ∈ ℝn if all derivatives of P
of order ≤ k − 1 vanish at a.

Theorem (Ball–Serra 2009, Clifton–Huang 2020)
For n ≥ 3,

• Any such P must have degree ≥ n+ k − 1.
• For k = 3, any such P must have degree ≥ n+ 3.
• For k ≥ 4, any such P must have degree ≥ n+ k+ 1.

All these proofs use a higher-order (“punctured”) version of the
Combinatorial Nullstellensatz, due to Ball and Serra.
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A more general question

Question
What is the minimum number of hyperplanes needed to cover
every point of {0,1}n \ {0⃗} at least k times while covering 0⃗ exactly ℓ
times (for fixed 0 ≤ ℓ < k)?

For ℓ = 0, this is exactly the same problem as before.
Upper bound: n+

(k−ℓ
2

)
+ 2ℓ hyperplanes suffice.

(Add ℓ copies of x1 = 0 and x1 = 1 to the (k − ℓ)-cover above.)
• ℓ = k − 3: n+ 2k − 3 hyperplanes suffice.
• ℓ = k − 2: n+ 2k − 3 hyperplanes suffice.
• ℓ = k − 1: n+ 2k − 2 hyperplanes suffice.

Question
What is the minimum degree of a polynomial P ∈ ℝ[x1,…, xn] with
zeroes of multiplicity ≥ k on {0,1}n \ {0⃗}, and multiplicity = ℓ at 0⃗?
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Exact answers to the algebraic questions
Question
What is the minimum degree of a polynomial P ∈ ℝ[x1,…, xn] with
zeroes of multiplicity ≥ k at all points in {0,1}n \ {0⃗}, but P(0⃗) ̸= 0?

Theorem (Sauermann–W. 2020)
For any k ≥ 2 and n ≥ 2k − 3, any such P has degP ≥ n+ 2k − 3.
Moreover, there exists such a P with degP ≤ n+ 2k − 3.

Question
What is the minimum degree of a polynomial P ∈ ℝ[x1,…, xn] with
zeroes of multiplicity ≥ k on {0,1}n \ {0⃗}, and multiplicity = ℓ at 0⃗?

Theorem (Sauermann-W. 2020)
For 0 ≤ ℓ ≤ k − 2, the answer is n+ 2k − 3.
For ℓ = k − 1, the answer is n+ 2k − 2.

Introduction Covering with multiplicity Our results Proof sketch Conclusion



Lower bounds for hyperplane coverings

Question (Clifton–Huang 2020)
What is the minimum number of hyperplanes needed to cover
every point of {0,1}n \ {0⃗} at least k times (without covering 0⃗)?

Our theorem implies that ≥ n+ 2k − 3 hyperplanes are necessary.

Question
What is the minimum number of hyperplanes needed to cover
every point of {0,1}n \ {0⃗} at least k times while covering 0⃗ exactly ℓ
times (for fixed 0 ≤ ℓ < k)?

• ℓ ≤ k − 2: ≥ n+ 2k − 3 hyperplanes are necessary
• ℓ = k − 1: ≥ n+ 2k − 2 hyperplanes are necessary

In particular, the hyperplane problem is resolved for ℓ ≥ k − 3.
(Since we previously saw matching upper bounds.)
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Algebra (maybe) isn’t enough!

Question (Clifton–Huang 2020)
What is the minimum number of hyperplanes needed to cover
every point of {0,1}n \ {0⃗} at least k times (without covering 0⃗)?

Conjecture (Clifton–Huang 2020)
The answer is n+

(k
2
)
for n sufficiently large.

Either this conjecture is false, or it cannot be proved via “purely
algebraic” techniques!
(“Purely algebraic” = techniques that work for all polynomials)
To my knowledge, all lower bounds for such problems are “purely
algebraic”.
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Proof sketch

Theorem (Sauermann–W. 2020)
Fix k ≥ 2 and n ≥ 2k − 3. If P ∈ ℝ[x1,…, xn] has P(0⃗) ̸= 0 but P has
zeroes of multiplicity ≥ k on {0,1}n \ {0⃗}, then degP ≥ n+ 2k − 3.

(Along the way, we’ll construct such a P with degP ≤ n+ 2k − 3.)
Recall Alon–Füredi: for k = 1, we have degP ≥ n.
The proof had three steps:
1. Convert P to reduced form P, such that degP ≤ degP and P

agrees with P on {0,1}n.
2. Every function {0,1}n → ℝ has a unique representation as a

reduced polynomial.
3. Find a reduced representation of P with degree n.
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Step 1: reduced form
Alon–Füredi

Replacing x2i by xi does not
change the evaluation on {0,1}n.
This is because

(x2i − xi)Q(x1,…, xn)
vanishes on {0,1}n, so
subtracting such terms from P
does not change the evaluation
on {0,1}n.
By repeatedly doing this, we can
eliminate all monomials divisible
by x2i .

Our setting
We want to convert P to P such
that the property of vanishing to
multiplicity ≥ k on {0,1}n \ {0⃗} is
preserved (as is the property
P(0⃗) ̸= 0).
We can subtract
(x2i1 − xi1) · · · (x2ik − xik)Q, or
(x2i1 − xi1) · · · (x2ik−1 − xik−1) ·

(x1 − 1) · · · (xn − 1)Q
for (not necessarily distinct)
i1,…, ik ∈ [n], and any Q.
We can eliminate all monomials
divisible by x2i1 · · · x2ik or by
x2i1 · · · x2ik−1

· x1 · · · xn.
Such polynomials are reduced.
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Reduced polynomials
A polynomial is reduced if it has no monomial divisible by

x2i1 · · · x2ik or x2i1 · · · x2ik−1 · x1 · · · xn.

Every reduced polynomial has degree ≤ n+ 2k − 3 (pigeonhole).

Lemma
For any P ∈ ℝ[x1,…, xn], there exists a reduced P with degP ≤ degP
such that

• All derivatives of order ≤ k − 1 of P and P agree on {0,1}n \ {0⃗}
• All derivatives of order ≤ k − 2 of P and P agree on 0⃗.

This implies the second part of our theorem: there exists a
polynomial with zeroes of multiplicity ≥ k on {0,1}n \ {0⃗} but not
vanishing on 0⃗ with degree ≤ n+ 2k − 3.
Proof: Simply pick your favorite high-degree polynomial with this
property, and reduce it!
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Step 2: Unique representation in reduced form

Alon–Füredi
Every function {0,1}n → ℝ has
a unique representation as a
reduced polynomial.
In other words: given desired
values at each point of {0,1}n,
there is a unique reduced
polynomial taking these values.

Our setting
Given values for all derivatives

• Of order ≤ k − 1 on
{0,1}n \ {0⃗},

• Of order ≤ k − 2 on 0⃗,
there is a unique reduced
polynomial taking these values.

Proof: Dimension counting,
and the linear map

{reduced polys} → {values}

is surjective.

Proof: Dimension counting,
and the linear map

{reduced polys} → {values}

is surjective.
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Step 3: Finishing the proof

Alon–Füredi
We want to show that any P that
vanishes on {0,1}n \ {0⃗} with
P(0⃗) = 1 has degP ≥ n.
We write down the polynomial

P̃ = (1− x1) · · · (1− xn)

which is reduced and agrees
with P on {0,1}n.
Since deg P̃ = n, we are done
by Steps 1 and 2.

Our setting
We want to show that any P that
vanishes to multiplicity ≥ k on
{0,1}n \ {0⃗} with P(0⃗) ̸= 0 has
degP ≥ n+ 2k − 3.
It suffices to prove this for
reduced P.
This is hard!
In the Alon–Füredi setting, there
was one reduced polynomial
with this property, P̃.
In our setting, there are very
many.
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Linear algebra to the rescue

Let Vk be the vector space of reduced polynomials with zeroes of
multiplicity ≥ k on {0,1}n \ {0⃗}. Recall that degP ≤ n+ 2k− 3 for all
P ∈ Vk. To finish, it suffices to prove:

Lemma
degP = n+ 2k − 3 for every non-zero P ∈ Vk.

Let Hk : Vk → ℝ[x1,…, xn] be the linear map sending a polynomial to
its homogeneous part of degree n+ 2k − 3.

Lemma ⇐⇒ Hk is injective ⇐⇒ dim(imHk) ≥ dimVk

So it suffices to identifyWk ⊆ ℝ[x1,…, xn] with dimWk = dimVk such
that Hk is surjective ontoWk.
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Identifying the image

It suffices to identifyWk ⊆ ℝ[x1,…, xn] with dimWk = dimVk such
that Hk is surjective ontoWk.
LetWk be the subspace spanned by all polynomials of the form

x1 · · · xn · (xm1 + · · · + xmn ) · x2d11 · · · x2dnn (*)
for non-negative (m,d1,…,dn) withm+ 2(d1 + · · · + dn) = 2k − 3.
Fact: dimWk = dimVk =

(n+k−2
n

)
.

So it suffices to show that Hk is surjective ontoWk.
Surjectivity onto basis elements (*) with some di > 0 is
straightforward by induction on k. So it suffices to prove:

Key lemma
There is a polynomial R ∈ Vk with Hk(R) ∈ Wk and the coefficient of
the basis element x1 · · · xn · (x2k−31 + · · · + x2k−3n ) in Hk(R) is non-zero.
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Proof of the key lemma
Key lemma
There is a polynomial R ∈ Vk with Hk(R) ∈ Wk and the coefficient of
the basis element x1 · · · xn · (x2k−31 + · · · + x2k−3n ) in Hk(R) is non-zero.

Writing down an explicit such R is hard!
Instead, we start with the high-degree polynomial

(x1 − 1)k · · · (xn − 1)k

and apply the reduction algorithm to get an element of Vk.
When we do this and apply Hk, the relevant basis coefficient is∑

(s1,…,st)
(−1)t ·

(k − 1− s1
s1 − 1

)(k − 1− s2
s2

)
· · ·

(k − 1− st
st

)
,

where the sum is over all sequences (s1,…, st) of positive integers
with s1 + · · · + st = k − 1.
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The sum is non-zero
To conclude, it suffices to prove:

Lemma
For k ≥ 2, we have∑

(−1)t
(k − 1− s1

s1 − 1

)(k − 1− s2
s2

)
· · ·

(k − 1− st
st

)
= (−1)k−1Ck−2

where the sum is over all sequences (s1,…, st) of positive integers
with s1 + · · · + st = k − 1.

“You have to check that something is non-zero, and that can
be very hard… There are very many numbers, and if it’s not
zero it can be any of them.” —June Huh

The values of this sum are

−1, 1, −2, 5, −14, 42, −132, 429, −1430, 4862, −16796…

These are the Catalan numbers! They’re given by Ci = 1
i+1

(2i
i
)
.
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Proof summary

• The sum on the previous slide is non-zero.
• There is some R ∈ Vk whose homogeneous part Hk(R) has a
non-zero coefficient of the basis element
x1 · · · xn · (x2k−31 + · · · + x2k−3n ) ofWk.

• Together with induction on k, this shows that imHk ⊇ Wk.
• Since dimVk = dimWk, Hk must be injective.
• Vk was defined as the space of reduced polynomials with
zeroes of multiplicity ≥ k on {0,1}n \ {0⃗}. So every such
polynomial has degree n+ 2k − 3.

• Combining this with Steps 1 and 2, we conclude that every
polynomial P with zeroes of multiplicity ≥ k on {0,1}n \ {0⃗} and
P(0⃗) ̸= 0 must have degP ≥ n+ 2k − 3.
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Other fields
Question
What is the minimum number of hyperplanes in 𝔽n needed to cover
every point of {0,1}n \ {0⃗} at least k times (without covering 0⃗)?

Theorem (Bishnoi–Boyadzhiyska–Das–Mészáros 2021)
Over 𝔽2, the answer is in

[
n+ ⌊ k−12 ⌋ log 2n

k−1 , n+ (k − 1) log(2n)
]
.

Question
What is the minimum degree of a polynomial P ∈ 𝔽 [x1,…, xn] with
zeroes of multiplicity ≥ k at all points in {0,1}n \ {0⃗}, but P(0⃗) ̸= 0?

Theorem (Sauermann–W. 2020)
If char𝔽 ∤ Ck−2, the answer is n+ 2k − 3.
If k is minimal such that char𝔽 | Ck−2, the answer is ≤ n+ 2k − 4.

𝔽2 is different from ℝ, and geometry is different from algebra!
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Open problems

Conjecture (Clifton–Huang 2020)
n+

(k
2
)
hyperplanes are necessary to cover {0,1}n \ {0⃗} with

multiplicity ≥ k, while not covering 0⃗ (for n sufficiently large).

• Prove this conjecture!
▶ Find a non-algebraic proof for the Alon–Füredi theorem (n

hyperplanes are needed for k = 1).
▶ Prove strengthenings of the Combinatorial Nullstellensatz under

strengthened assumptions on the polynomial (e.g. it splits into
linear factors).

• Understand what happens over finite fields.
▶ If char𝔽 ∤ Ck−2, then the answer to the polynomial problem is

n+ 2k − 3. Is the converse true?
▶ Combinatorial techniques may be more fruitful for the

hyperplane problem in finite fields.
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Thank you!
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