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The goal of these lectures is to introduce the basics of statistical physics to people in-
terested in extremal, enumerative, and probabilistic combinatorics. At the most basic level,
I hope to provide a guide to translating terms from one field to the other: partition func-
tions, Gibbs measures, ground states, correlation functions etc. At the next level, I want to
describe the statistical physics way of looking at things: viewing systems through the lens
of correlations, phases, and phase transitions. Finally I want to indicate how all of this can
be put to use in combinatorics: what combinatorial methods can be developed based on the
statistical physics perspective and what new questions in combinatorics can we ask based on
this perspective.

These lectures will necessarily only cover a portion of the applications and connections of
statistical physics to combinatorics. In particular I will say very little about several very in-
teresting topics including the Lovász Local Lemma, spin models on random graphs, graphons
and dense graphs, and entropy methods.

The five lectures will cover:

1. Fundamentals of statistical physics: Gibbs measures, partition functions, phase
transitions, correlations. How to approach combinatorics from the perspective of sta-
tistical physics.

2. Extremal combinatorics of sparse graphs: maximizing and minimizing the number
of independent sets in various classes of regular graphs. Linear programming and the
occupancy method.

3. Expansion methods and enumeration: cluster expansion. Conditions for conver-
gence. Consequences of a convergent cluster expansion.

4. Combinatorics at low temperatures: abstract polymer models. Multivariate hard-
core model as a universal model. Low-temperature enumeration with polymer models
and the cluster expansion.

5. Sphere packings, kissing numbers, and the hard sphere model: continuum
models and applications in combinatorics.
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1 Fundamentals of statistical physics

Statistical physics is the study of matter via probabilistic and statistical methods. The field
was born in the late 1800’s with important contributions by Maxwell, Boltzmann, and Gibbs.

The main motivating question in statistical physics is

Question 1.1. Can the macroscopic properties of matter (gasses, liquids, solids, magnets)
be derived solely from their microscopic interactions?

The beautiful idea behind statistical mechanics is that to understand a system with a huge
number of interacting particles or components, instead of tracking the position and velocity
of each particle, we can treat them as being distributed randomly, according to a probability
distribution that takes into account the microscopic interactions between particles.

1.1 Gibbs measures and partition functions

For now we will focus on spin models on graphs.

Fix a finite set of spins Ω. For a graph G = (V,E), the set of configurations is ΩV ,
assignments of spins to the vertices of G.

We define an energy function (or Hamiltonian) from ΩV → R ∪ {+∞}:

H(σ) =
∑
v∈V

f(σv) +
∑

(u,v)∈E

g(σu, σv)

where f : Ω→ R and g : Ω× Ω→ R ∪ {+∞} is symmetric. If g takes the value +∞ we say
that there is a hard constraint in the model.

The partition function at inverse temperature β is

ZG(β) =
∑
σ∈ΩV

e−βH(σ) .

The Gibbs measure is the probability distribution on ΩV defined by

µG(σ) =
e−βH(σ)

ZG(β)
.

The inverse temperature β controls the strength of the interaction in the model.

• At β = 0 (infinite temperature) the Gibbs measure is simply uniform on ΩV and so
each vertex receives a uniform and independent spin from Ω.

• At β = +∞ (zero temperature), the Gibbs measure is uniform over the ground states of
the model: the configurations σ that minimize the energy H(·). For Gibbs measures on
lattices like Zd, it is often very easy to understand the ground states (e.g. all even/all
odd configurations for hard-core; monochromatic configurations for Ising/Potts). In
general though, this need not be the case. In particular, finding and understanding the
ground states of anti-ferromagnetic models on random graphs is a challenging problem,
both mathematically and algorithmically.
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• Taking β positive and finite interpolates between independence (pure entropy) and
optimization (pure energy). Understanding the Gibbs measure and partition function
at positive temperature requires balancing energy and entropy.

From the combinatorics perspective, the Gibbs measure interpolates between two objects
we study a lot: a purely random object (say a uniformly random cut in a graph) and an
extremal object (the max cut or min cut in a graph).

An important theme in statistical physics is that the qualitative properties of the two ends
of the interpolation persist at positive temperature: a weakly interacting system has many
of the properties of an independent system, while a strongly interacting system correlates
strongly with the extremal object. The switch from one qualitative regime to the other is a
phase transition, the main topic of statistical physics.

1.2 Examples

The following are some examples of statistical mechanics models to keep in mind during these
lectures. To start thinking like physicist, you can imagine the underlying graph G is a finite
box in Zd (or even in Z2).

1. The hard-core model (hard-core lattice gas). Given a graph G, allowed configurations

are independent sets. The probability we pick an independent set I is λ|I|

ZG(λ) where

λ > 0 is the fugacity or activity. We can take Ω = {0, 1} with f(1) = log λ, f(0) = 0,
and g(1, 1) = +∞ (a hard constraint).

The hard-core model is a toy model of gas, and on Zd the model exhibits a gas/solid
phase transition.

Hard-core model
On  the hard-core model exhibits a phase transition as  changesℤd λ

Low fugacity High fugacity

Unoccupied

Even occupied

Odd occupied

High temperature Low temperature
Figure 1: Two instances of the hard-core model on Z2

2. The Ising model. Configurations are assignments of ±1 spins to the vertices of a graph.

A configuration σ is chosen with probability eβM(G,σ)

ZG(β) where M(G, σ) is the number of

edges of G whose vertices receive the same spin. That is, g(σu, σv) = σuσv.
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If we think of the spins as being in/out the the Ising model is a probability distribution
over cuts of G. The parameter β is the inverse temperature. β ≥ 0 is the ferromagnetic
case: same spins are preferred across edges. β ≤ 0 is the antiferromagnetic case. The
Ising model is a toy model of a magnetic material (it magnetizes when spins align
globally).

3. The Potts model. The Potts model is a generalization of the Ising model to q ≥ 2
spins (or colors). Configurations are assignments of q colors to the vertices of a graph.

A configuration is chosen with probability eβM(G,σ)

ZG(q,β) where M(G, σ) is the number of
monochromatic edges of G under the coloring σ. Again β ≥ 0 is the ferromagnetic and
β ≤ 0 the antiferromagnetic case.

Figure 2: Two instances of the 4-color ferromagnetic Potts model on Z2

Not all Gibbs measures are spin models on graphs.

4. The monomer-dimer model. Allowed configurations are matchings in G, with P (M) =
λ|M|

ZG(λ) . ‘Dimers’ are edges in the matching while ‘monomers’ are unmatched vertices.
The monomer-dimer model is the hard-core model on the line graph of G. This is an
example of an edge coloring model (see e.g. [74]).

5. The hard sphere model. This is a continuum model of a gas and perhaps the original
model in statistical mechanics.

6. The hard-core model on a hypergraph. Configurations are subsets S of vertices that
contain no hyperedge, weighted by λ|S|. The Hamiltonian now has terms corresponding
to each hyperedge. Such an interaction is called a multibody interaction.

4



Figure 3: The hard sphere model at low and high density

1.3 Motivation for the form of the distribution

Why does a Gibbs distribution have an exponential (or ‘log linear’ form)? There are a few
ways of answering this.

1. What was the original derivation of this form?

If we imagine occupied vertices of an independent set are particles in a large box rep-
resented by a portion of Zd then

2. Why is it useful?

Gibbs measures have a very important conditional independence property: they are
Markov random fields and satisfy:

P (σv = τv|{σu = τu}u∈V−v) = P
(
σv = τv|{σu = τu}u∈N(v)

)
.

Equivalently, suppose we partition V = A ∪B ∪ C so that there are no edges between
A and C. Then if we condition on the spins in B, the spins in A are independent of
the spins in C.

Note that such a property is not true in other natural models of a random independent
set, such as choosing a random independent set of size k in G uniformly at random.

3. Is it an ‘optimal’ distribution in some sense?

Yes! Say we have a finite set Σ of configurations and a function H : Σ → R ∪ {+∞}.
Consider the set PB of all probability distributions µ on Σ so that EµH = B where
minσ∈ΣH(σ) ≤ B ≤ maxσ∈Σ. Then the distribution µ∗ ∈ PB that maximizes the

Shannon entropy has the form µ∗(σ) = e−βH(σ)

Z(β) with Z(β) =
∑
e−βH(σ). That is, it is

a Gibbs distribution.

For example, the Ising model is the probability distribution on cuts of G that maximizes
entropy subject to a given mean number of edges cut. The hard-core model is the
distribution on independent sets of G with a given mean size that maximizes entropy.
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In combinatorics we are very familiar with the benefits of studying maximum entropy
distributions.

Exercise 1. Let Gn be the set of all graphs on n vertices. What is the maximum entropy
distribution on Gn with mean number of edges m?

1.4 Marginals and correlations

Central to the statistical physics point of view is considering how correlations in a given
model behave and how this behavior depends on the parameters. All of the discussion below
pertains to general graphs, but again for intuition keep in mind a graph like Z2 or Zd with
very natural geometry.

We will also focus here mostly on two-spin models, like Ising or hard-core where a prob-
ability distribution on the spin set Ω can be specified by its expectation.

The marginal or occupation probability of a vertex v is µv = E[σv]; for instance, in the
hard-core model µv = P (v ∈ I). (For a q-spin model like Potts the marginal would be a
probability distribution on [q]).

For a pair of vertices u, v, the joint marginal is µu,v = E[σuσv]. In the hard-core model,
this is µuv = PrG,λ[u, v ∈ I]. (For a q-spin model, the joint marginal would be described by
a q × q matrix).

For a subset S ⊆ V , the joint marginal is µS = E[
∏
v∈S σv]. If |S| = k, then µS is also

called the k-point correlation function.

We are often interested in how strong correlations between spins are, as a function of the
parameters of the model and the distance between vertices. A natural way to measure the
correlation between the spins at vertices u and v is the compute a covariance:

κ(u, v) = µuv − µuµv .

If σu and σv were independent then κ(u, v) would be 0; if κ(u, v) is small in absolute value
then we can say σu and σv are weakly correlated. The quantity κ(u, v) is called the truncated
2-point correlation function. One can also define truncated k-point correlation functions.

1.4.1 Decay of correlations

We say µG exhibits exponential decay of correlations if there exist constants a, b > 0 so that
for all u, v ∈ V ,

|κ(u, v)| = |µuv − µuµv| ≤ ae−b·dist(u,v) ,

where dist(·, ·) is the graph distance in G. This definition really pertains to an infinite
sequence of graphs Gn (or an infinite graph like Zd) and in this case a and b should be
independent of n.

If κ(u, v) ≈ e−b·dist(u,v) then we call 1/b the correlation length of the model: a measure of
how far correlations persist. If spins are independent then the correlation length is 0, while
if there is long-range order, |κ(u, v)| bounded away from 0 independent of the distance, then
the correlation length diverges to ∞.
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1.5 Phase transitions

There are at least three different but related notions of phase transition in statistical physics.
In many situations the three definitions are equivalent.

A phase transition only occurs in the infinite volume limit. Let Λn ⊂ Zd be the box of
sidelength n, and let |Λn| be the number of its vertices. We consider the Gibbs measure and
partition function on Λn with boundary conditions: for vertices on the boundary, we may
specify their spins (or leave them ‘free’). For instance we may take the all even boundary
conditions for the hard-core model: all vertices on the boundary whose sum of coordinates are
even are specified to be in the independent set. Under very general conditions the following
are true:

1. There is a subsequential weak limit of the Gibbs measures µΛn as n → ∞. Such a
limiting measure µ∞ is an infinite-volume Gibbs measure.

2. The limit

f(β) = lim
n→∞

1

|Λn|
logZΛn(β)

exists and is independent of the sequence of boundary conditions.

The function f(β) is called the infinite volume pressure or free energy.

1. Disorder vs long-range order.

A phase transition occurs at βc if for β < βc the model exhibits exponential decay
of correlations while for β > βc long-range correlations persist (the correlation length
diverges).

2. Uniqueness vs non-uniqueness of the infinite volume Gibbs measure.

A phase transition occurs at βc if for β < βc there is a unique infinite volume Gibbs
measure, while for β > βc there are multiple infinite volume Gibbs measures. That is,
for β < βc the effect of the boundary conditions vanishes in the limit while for β > βc
the effect of boundary conditions persists.

Often there are extremal boundary conditions: even/odd occupied for hard-core,
monochromatic boundary conditions for Ising/Potts. Then we can ask does the choice
of extremal boundary conditions affect the marginal of the origin as n→∞.

3. Analyticity vs non-analyticity of the infinite volume pressure.

A phase transition occurs at βc if the function f(β) is non-analytic at βc. A phase
transition is first-order if f ′(β) is discontinuous at βc and second-order if f ′′(β) is
discontinuous at βc.

Analyticity of f(β) is closely related to the zeroes of ZΛn(β) in the complex plane. As
a function ZΛn(β) is a polynomial in e−β with positive coefficients and so has no zeros
on the positive real axis. If there is a region in the complex plane containing β0 > 0 for
which ZΛn =6= 0 for all n, then f must be analytic at β0 and thus no phase transitions
occurs. A phase transition occurs when zeros of ZΛn in the complex plane condense
as n → ∞ onto a positive βc. This perspective is called the Lee-Yang theory of phase
transitions [80]
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1.6 Translation to combinatorics

Here’s a basic glossary of objects and concepts in statistical physics with their counterparts
in combinatorics.

Statistical physics Combinatorics

ground state extremal object
partition function (weighted) number of objects

Gibbs measure random object
free energy (pressure) exponential growth rate of the number of objects

zero-temperature extremal objects
low-temperature stability

Take, for example, Mantel’s Theorem: the triangle-free graph on n vertices with the most
edges is a complete bipartite graph with a balanced bipartition. Classifying the extremal
examples is the task of understanding the ground states. Asking ‘how many triangle-free
graphs are there?’ is the counting problem: computing or approximating the partition func-
tion. ’What does a typical triangle-free graph look like?’ This is the problem of understanding
the Gibbs measures and its correlations.

Classical statistical physics focuses on lattices like Zd (with special emphasis on the most
physically relevant cases Z2 and Z3. In particular, these graphs have a few special properties:
they are regular, vertex-transitive and of polynomial growth (the number of vertices within
distance t of a fixed vertex grows like td).

Extremal combinatorics, on the other hand, is the study of extremal, ‘worst-case’ graphs.
Often the graphs studied in combinatorics are very different than lattices: sparse random
graphs, for instance, play a leading role in probabilistic combinatorics but their neighborhoods
grow exponentially. On the other hand, they are very good expanders and their local structure
is particularly simple: typical local neighborhoods are trees.

1.7 Moments, cumulants, and derivatives of the log partition function

The energy H(·) is a local function: it is a sum of functions on vertices and edges. As
a random variable, H(σ) is a locally computable statistic or observable of the model. For
instance in the hard-core model it counts the size of an independent set while in the Ising
and Potts models it counts the number of monochromatic edges (or equivalently the number
of crossing edges of a cut).

Understanding the random variable H(σ) in the limit Λn → Zd can tell us a lot about the
behavior of the model and any phase transitions that might occur as parameters are varied.

To understand the random variable H(σ) we’d like to know its expectation, variance as
a start, and then perhaps higher moments.

For a random variable X, the moment generating function is MX(t) = EetX . The cu-
mulant generating function is its logarithm KX(t) = logEetX . The cumulants of X are the
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coefficients in the Taylor series:

KX(t) =

∞∑
n=1

κn(X)
tn

n!
.

. Or in other words, κn(X) = K
(n)
X (0).

Cumulants are related to moments but are often more convenient to work with in statisti-
cal physics. For example, the cumulants of a Gaussian N(µ, σ2) are κ1 = µ, κ2 = σ2, κk = 0
for k ≥ 3 (and the vanishing of the higher cumulants characterizes the Gaussian distribution.
The cumulants of a Poisson(λ) random variable are all λ.

Recall that the partition function looks similar to a moment generating function:

Z =
∑
σ

e−βH(σ) .

By taking derivatives of logZ(β) in β we obtain the cumulants of the random variable
H(σ).

d

dβ
logZ(β) =

d
dβZ(β)

Z(β)

= −
∑

σ∈ΩV H(σ)e−βH(σ)

Z(β)

= −
∑
σ∈ΩV

H(σ)µ(σ)

= −EH(σ)

= −κ1(H) .

The second derivative is

d2

dβ2
logZ(β) =

d2

dβ2Z(β)

Z(β)
−

(
d
dβZ(β)

Z(β)

)2

= E[H(σ)2]− (EH(σ)2

= var(H(σ))

= κ2(G) .

The higher derivatives recover the cumulants of the energy:

dk

dβk
logZ(β) = (−1)kκk(H) .

1.7.1 Multivariate partition functions

To study correlations via the partition function we need to add variables to the partition
function to distinguish individual vertices. We add non-uniform external fields for every
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vertex. Consider the following partition function of a two-spin model with non-uniform
external fields given by the vector α :

ZG(α) =
∑
σ∈ΩV

e
∑
v∈V αvσv · e−βH(σ) .

Then we can look at the partial derivatives of logZG with respect the variables αv.

∂

∂αv
logZG(α) =

∂
∂αv

ZG

ZG

=
∑
σ∈ΩV

σv
eα·σe−βH(σ)

ZG

=
∑
σ∈ΩV

σvµ(σ)

= E[σv]

= µv ,

so we have recovered the marginal of v by taking a partial derivative.

We can now take mixed partial derivatives with respect to αu, αv:

∂2

∂αu∂αv
logZG(α) =

= E[σuσv]− E[σu]E[σv]

= µuv − µuµv
= κ(u, v) .

In fact we can obtain the joint cumulants of any collection of spins by taking partial deriva-
tives. The truncated k-point correlation functions are the joint cumulants of k spin variables.

For more on joint cumulants in the setting of the Ising model at low temperature, see [26].

An important special case of the use of non-uniform external fields is the multivariate
hard-core model. The is a probability distribution over independent sets of G in which each
vertex has its own fugacity λv. The partition function is:

ZG(λ) =
∑

I∈I(G)

∏
v∈I

λv .

This is a multilinear polynomial in n variables. Not only can we use it to study correlations
in the hard-core model, but taking the multivariate perspective is also the natural setting of
some analytic techniques for understanding complex zeros of the partition function (e.g. [70,
59, 55]).

Note that since we have written the hard-core partition function as a polynomial (univari-
ate or multivariate) we have to adjust the formulas for the cumulants and joint cumulants
slightly. For instance, the expected size of an independent set drawn from the hard-core
model on G at fugacity λ is

E[|I|] = λ · (logZG(λ))′ =
λZ ′G(λ)

ZG(λ)
=

∑
I |I|λ|I|

ZG(λ)
. (1)
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1.8 Basic tools and tricks

If G1 and G2 are disjoint graphs then ZG1∪G2 = ZG1ZG2 . If u and v are in different connected
components of G then σu and σv are independent and µuv = µuµv.

The following identity is often useful. For any v ∈ V ,

ZG(λ) = λZG−N(v)(λ) + ZG−v(λ) , (2)

where N(v) = {v} ∪N(v). We can use this to write the marginal

µv =
λZG−N(v)(λ)

ZG(λ)
. (3)

1.9 Summary

• The basic objects in statistical physics are Gibbs measures and partition functions.
Statistical physicists are interested in the correlation properties of Gibbs measures in
the infinite volume limit on graphs like Zd.

• The inverse temperature parameter interpolates from independence to optimization

• The form of a Gibbs measure (probability proportional to exponential of an energy, or
‘log linear’) is physically motivated and provides some very useful properties including
conditional independence and the ability to write statistics as derivatives of the log
partition function.

• The cumulants of the energy can be obtained by taking derivatives of the log partition
function in β. By putting external fields on all vertices, we can obtain the joint cumu-
lants of any set of spins by taking partial derivatives of the log partition function with
respect to these external fields.

• Many ideas, themes, questions, and objects in combinatorics have counterparts in sta-
tistical physics; knowing a little of the terminology will allow you to move between the
two fields.

To read more on the basics of statistical physics, see the recent textbook of Friedli and
Vilenik [28]. For many classical and foundational results (including for continuum models),
see the classic text of Ruelle [64]. For a computational perspective on statistical physics
models and random graphs, see the textbook of Mezard and Montanari [54].

1.10 Exercises

1. Compute ZKd(λ). For u, v ∈ Kd compute the truncated two-point correlation function.

2. Prove that the following distribution on independent sets of G is the hard-core model
at fugacity λ. Pick a subset S by including each vertex independently with probability
λ

1+λ and condition on the event that S is an independent set.
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3. Consider the hard-core model on a graph G of maximum degree ∆. Fix a vertex v.
Prove that

λ

(1 + λ)∆+1
≤ µv ≤

λ

1 + λ
.

Show that the upper bound is tight. Is the lower bound tight? If not, can you prove a
tight bound?

4. Let Λn ⊂ Zd be the box of sidelength n, and let |Λn| be the number of its vertices. Con-
sider the hard-core model on Λn with boundary conditions (vertices on the boundary
may be specific ‘in’ or ‘out’ of the independent set).

(a) Prove that the limit limn→∞
1
|Λn| logZΛn(λ) exists. (Hint: look up ‘subadditivity’).

(b) Show that the limit does not depend on the boundary conditions.

5. Consider the hard-core model on a graph G and let F be the set of vertices that are not
in the independent set and have no neighbor in the independent set (they are free to
be added to the independent set). Calculate E[|F |] in terms of derivatives of logZG(λ).

6. Let Pn be the path on n vertices.

(a) Write a recursion for the independence polynomial ZPn(λ).

(b) Solve the recursion to compute the limit f(λ) = limn→∞
1
n logZPn(λ).

(c) What can you deduce about phase transitions in the hard-core model on Z1 from
the function f(λ)?

7. Consider the hard-core model on a bipartite graph G with bipartition (A,B). Prove
(by induction?) that if u, v ∈ A then κ(u, v) = µuv − µuµv ≥ 0. (Hint: look up the
FKG inequality; it is also possible to prove without using FKG). When does equality
hold?
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2 Extremal combinatorics of sparse graphs

The field of extremal combinatorics asks for the maximum and minimum of various graph
parameters over different classes of graphs. Some examples of classic theorems from extremal
combinatorics are Mantel’s Theorem mentioned above, or Dirac’s Theorem: which graph on
n vertices containing no Hamilton cycle has the largest minimum degree?

Here we focus on extremal results for bounded-degree graphs. We first mention three
classic results in this area, then we discuss how taking the point of view of statistical physics
and correlations allows us to reprove, strengthen, or generalize these results. For a nice
overview of results, techniques, and open questions in the area, see the survey of Zhao [82]
and [66] for very recent results.

We will combine the statistical physics and combinatorics perspectives: like statistical
physicists we will be interested in correlations, but we will ask extremal questions about
correlations. For a given class of graphs, when do spins have the strongest positive correlation?
The strongest negative correlation? The least correlation?

Independent sets in regular graphs

Which d-regular graph has the most independent sets? This question was first raised in the
context of number theory by Andrew Granville, and the first approximate answer was given
by Noga Alon [2] who applied the result to problems in combinatorial group theory.

Jeff Kahn gave a tight answer in the case of d-regular bipartite graphs.

Theorem 2.1 (Kahn [46]). Let 2d divide n Then for any d-regular, bipartite graph G on n
vertices,

i(G) ≤ i(Hd,n) =
(

2d+1 − 1
)n/2d

,

where Hd,n is the graph consisting of n/2d copies of Kd,d.

In terms of the independence polynomial, we can rephrase this as: for any d-regular,
bipartite G,

ZG(1) ≤ ZKd,d(1)n/2d ,

or, more convenient from our perspective,

1

|V (G)|
logZG(1) ≤ 1

2d
logZKd,d(1) .

Work of Galvin and Tetali [34] and Zhao [81] extended this result to all values of the inde-
pendence polynomial and all d-regular graphs.

Theorem 2.2 (Kahn; Galvin-Tetali; Zhao). For all d-regular graphs G and all λ > 0,

1

|V (G)|
logZG(λ) ≤ 1

2d
logZKd,d(λ) .
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See Galvin’s lecture notes on the entropy method [31] for an exposition of the proof of
Theorem 2.1 and extensions. See also the recent work of Sah, Sawhney, Stoner, and Zhao [65]
for an extension to irregular graphs.

The question of minimizing the number of (weighted) independent sets in a d-regular
graph is somewhat simpler: the answer it the clique Kd+1, proved by Cutler and Radcliffe [19];
for a short proof see [24].

Independent sets in triangle-free graphs

Among all d-regular graphs, the graph with the smallest scaled independence number is the
clique Kd+1. If we impose the condition that G has no triangles, then it is not immediately
clear which graph has the smallest independence number α(G).

Following Ajtai, and Komlós, and Szemerédi [1], Shearer proved the following.

Theorem 2.3 (Shearer [71]). For any triangle-free graph G on n vertices of average degree
at most d,

α(G) ≥ (1 + od(1)
log d

d
n .

As a consequence, Shearer obtained the current best upper bound on the Ramsey number
R(3, k).

Corollary 2.4 (Shearer [71]). The Ramsey number R(3, k) satisfies

R(3, k) ≤ (1 + ok(1))
k2

log k
.

The random d-regular graph (conditioned on being triangle-free) satisfies

α(G) = (1 + od(1))
2 log d

d
n

and so there is a factor of 2 that could potentially be gained in Shearer’s bound. The factor
of 2 would immediately give a factor 2 improvement to the bound on R(3, k).

Matchings and perfect matchings

A third classic result that can be interpreted as an extremal problem for bounded degree
graphs is Bregman’s Theorem [14]. This theorem gives an upper bound on the permanent of
a 0/1 matrix with prescribed row sums.

A special case of Bregman’s theorem can be stated as an extremal result for d-regular
graphs. Let pm(G) denote the number of perfect matchings of a graph G.

Theorem 2.5 (Bregman). For all d-regular graphs G,

1

|V (G)|
log pm(G) ≤ 1

2d
log pm(Kd,d) .
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2.1 The occupancy fraction of the hard-core model

In this section we present a statistical physics based approach to proving extremal theorems
for sparse graphs. We will prove extremal results for partition functions and graph polynomi-
als by optimizing the derivative of the log partition function over a given class of graphs. By
integrating the resulting bound we obtain a corresponding result for the partition function.
As we saw in Lecture 1, the logarithmic derivative has a probabilistic interpretation as the
expectation of a locally computable observable of the relevant model.

We start with independent sets and the hard-core model, where the relevant observable is
the expected size of an independent set drawn from the model. It will be more convenient for
us to divide this by the number of vertices and study the expected independent set density,
or the occupancy fraction, αG(λ):

αG(λ) =
1

|V (G)|
EG,λ|I|.

We begin by collecting some basic facts about the occupancy fraction, following our
discussion above about the cumulants and logarithmic derivatives of the log partition function.

Lemma 2.6. The occupancy fraction is λ times the derivative of the free energy:

αG(λ) = λ ·
(

1

|V (G)|
logZG(λ)

)′
.

Lemma 2.7. The occupancy fraction αG(λ) is a strictly increasing function of λ.

This follows since the second derivative of logZG is, up to scaling, the variance of |I|
which is strictly positive.

The occupancy fraction captures quite a lot of combinatorial information:

• αG(1) is the average size of a (uniformly) random independent set from G.

• limλ→∞ αG(λ) = α(G)
n , the scaled size of the largest independent set in G.

• Since αG(λ) is the scaled derivative of logZG(λ), we can compute the partition function
(or the number of independent sets) of G:

1

|V (G)|
logZG(λ) =

∫ λ

0

αG(t)

t
dt .

In particular if we can prove upper or lower bounds on the occupancy fraction, then
by integrating we obtain upper and lower bounds on the partition function (and the
number of independent sets).

What is particularly nice about working with the occupancy fraction (or any other ob-
servable) is that we can argue about it locally.

In trying to understand correlations between spins in the hard-core model, we can use an
idea that has appeared both in combinatorics and computer science (e.g. [46, 27]): instead
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of considering correlations between spins (occupancies) we consider correlations between the
events that different vertices are allowed to be in the independent set – not blocked by another
vertex.

We say v is uncovered with respect to an independent set I if N(v) ∩ I = ∅.

Fact 1 Pr[v ∈ I|v uncovered] = λ
1+λ .

The follows from the spatial independence property of a Gibbs measure. If N(v) ∩ I = ∅,
then v can be either in or out; in the first case it contributes a factor λ in the second case a
factor 1.

Fact 2 If G is triangle-free, then Pr[v uncovered|v has j uncovered neighbors] = (1 + λ)−j .

To prove Fact 2 note that the graph induced by the uncovered neighbors of v consists of
isolated vertices since G is triangle free.

Now we write αG(λ) in two ways:

αG(λ) =
1

n

∑
v∈V (G)

Pr[v ∈ I]

=
1

n

λ

1 + λ

∑
v∈V (G)

Pr[v uncovered] by Fact 1

=
1

n

λ

1 + λ

∑
v∈V (G)

d∑
j=0

Pr[v has j uncovered neighbors] · (1 + λ)−j by Fact 2,

and

αG(λ) =
1

n

1

d

∑
v∈V (G)

∑
u∼v

Pr[u ∈ I] since G is d-regular

=
1

n

1

d

λ

1 + λ

∑
v∈V (G)

∑
u∼v

Pr[u uncovered] by Fact 1.

Now consider the following two-part experiment: pick I from the hard-core model on
G and independently choose v uniformly at random from V (G). Let Y be the number of
uncovered neighbors of v with respect to I. Now our two expressions for αG(λ) can be
interpreted as expectations over Y.

αG(λ) =
λ

1 + λ
EG,λ(1 + λ)−Y

αG(λ) =
1

d

λ

1 + λ
EG,λY .

Thus the identity

EG,λ(1 + λ)−Y =
1

d
EG,λY (4)

holds for all d-regular triangle-free graphs G.

We can use this observation to prove a strengthening of Theorem 2.2.
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Theorem 2.8 (Davies, Jenssen, Perkins, Roberts [22]). For any d-regular graph G, and any
λ > 0,

αG(λ) ≤ αKd,d(λ) =
λ(1 + λ)d−1

2(1 + λ)d − 1
.

Proof of Theorem 2.8. We prove this first for triangle-free G to illustrate the method.

Now the idea is to relax the maximization problem; instead of maximizing αG(λ) over all
d-regular graphs, we can maximize λ

1+λE(1 +λ)−Y over all distributions of random variables
Y that are bounded between 0 and d and satisfy the constraint (4).

It is not too hard to see that to maximize EY subject to these constraints, we must put
all of the probability mass of Y on 0 and d. Because of the constraint (4), there is a unique
such distribution.

Now fix a vertex v in Kd,d. If any vertex on v’s side of the bipartition is in I, then v has
0 uncovered neighbors. If no vertex on the side is in I, then v has d uncovered neighbors. So
the distribution of Y induced by Kd,d (or Hd,n) is exactly the unique distribution satisfying
the constraints that is supported on 0 and d. And therefore,

αG(λ) ≤ αKd,d(λ) .

Now we give the full proof for graphs that may contain triangles.

Let G be a d-regular n-vertex graph (with or without triangles). Do the following two
part experiment: sample I from the hard-core model on G at fugacity λ, and independently
choose v uniformly from V (G). Previously we considered the random variable Y counting
the number of uncovered neighbors of v. When G was triangle-free we knew there were no
edges between these uncovered vertices, but now we must consider these potential edges. Let
H be the graph induced by the uncovered neighbors of v; H is a random graph over the
randomness in our two-part experiment.

We now can write αG(λ) in two ways, as expectations involving H.

αG(λ) =
λ

1 + λ
Pr
G,λ

[v uncovered] =
λ

1 + λ
EG,λ

[
1

ZH(λ)

]
(5)

αG(λ) =
1

d
EG,λ[I ∩N(v)] =

λ

d
EG,λ

[
Z ′H(λ)

ZH(λ)

]
, (6)

and so for any d-regular graph G, we have the identity

λ

1 + λ
EG,λ

[
1

ZH(λ)

]
=
λ

d
EG,λ

[
Z ′H(λ)

ZH(λ)

]
. (7)

Now again we can relax our optimization problem from maximizing αG over all d-regular

graphs, to maximizing λ
1+λE

[
1

ZH(λ)

]
over all possible distributions H on Hd, the set of

graphs on at most d vertices, satisfying the constraint (7).

We claim that the unique maximizing distribution is the one distribution supported on
the empty graph, ∅, and the graph of d isolated vertices, Kd. This is the distribution induced
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by Kd,d (or Hd,n) and is given by

Pr
Kd,d

(H = ∅) =
(1 + λ)d − 1

2(1 + λ)d − 1

Pr
Kd,d

(H = Kd) =
(1 + λ)d

2(1 + λ)d − 1
.

To show that this distribution is the maximizer we will use linear programming.

Both our objective function and our constraint are linear functions of the variables
{p(H)}H∈Hd , so we can pose the relaxation as a linear program.

maximize
∑
H∈Hd

p(H) · λ

1 + λ

1

ZH(λ)

subject to p(H) ≥ 0 ∀H ∈ Hd∑
H∈Hd

p(H) = 1

∑
H∈Hd

p(H)

[
λ

1 + λ

1

ZH(λ)
− λ

d

Z ′H(λ)

ZH(λ)

]
= 0 .

The first two constraints insure that the variables p(H) form a probability distribution; the
last is constraint (7).

Our candidate solution is p(∅) = (1+λ)d−1
2(1+λ)d−1

, p(Kd) = (1+λ)d

2(1+λ)d−1
, with objective value

αKd,d(λ) = λ(1+λ)d−1

2(1+λ)d−1
. To prove that this solution is optimal (and thus prove the theorem),

we need to find some feasible solution to the dual with objective value αKd,d(λ).

The dual linear program is:

minimize Λp

subject to Λp + Λc ·
[

λ

1 + λ

1

ZH(λ)
− λ

d

Z ′H(λ)

ZH(λ)

]
≥ λ

1 + λ

1

ZH(λ)
for all H ∈ Hd .

For each variable of the primal, indexed by H ∈ Hd, we have a dual constraint. For each con-
straint in the primal (not including the non-negativity constraint), we have a dual variable, in
this case Λp corresponding to the probability constraint (summing to 1) and Λc corresponding
to the remaining constraint. (Note that we do not have non-negativity constraints Λp,Λc ≥ 0
in the dual because the corresponding primal constraints were equality constraints).

Now our task becomes: find a feasible dual solution with Λp = αKd,d(λ). What should
we choose for Λc? By complementary slackness in linear programming, the dual constraint
corresponding to any primal variable that is strictly positive in an optimal solution must
hold with equality in an optimal dual solution. In other words, we expect the constraints
corresponding to H = ∅,Kd to hold with equality. This allows us to solve for a candidate
value for Λc. Using Z∅(λ) = 1 and Z ′∅(λ) = 0, we have the equation

αKd,d(λ) + Λc

[
λ

1 + λ
− 0

]
=

λ

1 + λ
.
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Solving for Λc gives

Λc =
(1 + λ)d − 1

2(1 + λ)d − 1
.

Now with this choice of Λc, and Λp = αKd,d(λ) = λ(1+λ)d−1

2(1+λ)d−1
, our dual constraint for H ∈ Hd

becomes:

λ(1 + λ)d−1

2(1 + λ)d − 1
+

(1 + λ)d − 1

2(1 + λ)d − 1

[
λ

1 + λ

1

ZH(λ)
− λ

d

Z ′H(λ)

ZH(λ)

]
≥ λ

1 + λ

1

ZH(λ)
. (8)

Multiplying through by ZH(λ) · (2(1 + λ)d − 1) and simplifying, (8) reduces to

λd(1 + λ)d−1

(1 + λ)d − 1
≥

λZ ′H(λ)

ZH(λ)− 1
, (9)

and we must show this holds for all H ∈ Hd (except for H = ∅ for which we know already
the dual constraint holds with equality). Luckily (9) has a nice probabilistic interpretation:
the RHS is simply EH,λ

[
|I|
∣∣|I| ≥ 1

]
, the expected size of the random independent set given

that it is not empty, and the LHS is the same for the graph of d isolated vertices. Proving (9)
is left for the exercises, and this completes the proof.

2.2 Minimizing independent sets for triangle-free graphs

Instead of asking for the strongest positive correlations, we can ask for the strongest negative
correlations. Or, in other words, we can try to minimize the occupancy fraction given our
identity (for triangle-free graphs) EG,λ(1 + λ)−Y = 1

dEG,λY.

Theorem 2.9 (Davies, Jenssen, Perkins, Roberts [23]). For all triangle-free graph G of
maximum degree d,

αG(1) ≥ (1 + od(1))
log d

d
.

Moreover,

i(G) ≥ e(
1
2

+od(1)) log2 d
d

n .

The respective constants 1 and 1/2 are best possible and attained by the random d-regular
graph.

Proof. We now return to the identity (4) for triangle-free graphs. We remarked that to
maximize EY given the constraint E(1 + λ)−Y = 1

dEY and 0 ≤ Y ≤ d, we should take Y to
be supported on the two extreme values, 0 and d.

What if we want to minimize EY subject to these constraints? In this case, by convexity,
we should take Y to be constant: Y = y∗ where (1 + λ)−y

∗
= y∗

d , or in other words,

y∗ · ey∗ log(1+λ) = d.

Formally, we can use Jensen’s inequality:

1

d
EY = E(1 + λ)−Y ≥ (1 + λ)−EY
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Figure 4: λ
1+λy

∗ as a function of λ with d = 100.

and so EY ≥ y∗ as above.

The solution is

y∗ =
W (d log(1 + λ))

log(1 + λ)

where W (·) is the W-Lambert function. This gives

αG(λ) ≥ 1

d

λ

1 + λ

W (d log(1 + λ))

log(1 + λ)
. (10)

Now although αG(λ) is monotone increasing in λ, somewhat surprisingly the bound (10)
is not monotone in λ (see Figure 4 for example).

It turns out that it is best to take λ = λ(d) → 0 as d → ∞, but not as quickly as any
polynomial, that is λ(d) = ω(d−ε) for every ε > 0.

We set λ = 1/ log d and derive a bound asymptotically in d. We show in the exercises
that the Lambert function satisfies

W (x) = log(x)− log log(x) + o(1)

as x → ∞. If λ → 0 then λ
(1+λ) log(1+λ) → 1, and W (d log(1 + λ)) = (1 + od(1)) log d. This

gives, for λ = 1/ log d,

αG(λ) ≥ (1 + od(1))
log d

d
,

and by monotonicity this extends to all larger λ.

To obtain the counting result we integrate the bound (10) for λ = 0 to 1 to obtain a lower
bound on the partition function.

1

n
log i(G) =

1

n
logZG(1) =

∫ 1

0

αG(t)

t
dt
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≥
∫ 1

0

1

d

1

1 + t

W (d log(1 + t))

log(1 + t)
dt from (10)

=
1

d

∫ W (d log 2)

0
1 + u du using the substitution u = W (d log(1 + t))

=
1

d

[
W (d log 2) +

1

2
W (d log 2)2

]
=

(
1

2
+ od(1)

)
log2 d

d
.

Using a similar argument to the proof of the R(3, k) upper bound, we can use Theorem 2.9
to give a lower bound on the number of independent sets in a triangle-free graph without
degree restrictions.

Corollary 2.10. For any triangle-free graph G on n vertices,

i(G) ≥ e
(√

2 log 2
4

+o(1)
)√

n logn
.

Proof. Suppose the maximum degree of G is equal to d. Then i(G) ≥ 2d since we can
simply take all subsets of the neighborhood of the vertex with largest degree, and i(G) ≥
e(

1
2

+od(1)) log2 d
d

n from Theorem 2.9. As the first lower bound is increasing in d and the second
is decreasing in d, we have

i(G) ≥ min
d

max

{
2d, e(

1
2

+od(1)) log2 d
d

n

}
= 2d

∗

where d∗ is the solution to 2d = e(
1
2

+od(1)) log2 d
d

n, that is,

d∗ = (1 + od(1))

√
2
√
n log n

4
√

log 2
,

and so

i(G) ≥ e
(√

2 log 2
4

+o(1)
)√

n logn
.

2.2.1 Max vs. average independent set size?

Theorem 2.9 implies the upper bound on R(3, k) in exactly the same way as Shearer’s bound,
as the occupancy fraction is of course a lower bound on the independence ratio. But we might
hope that it gives more – that in triangle-free graphs there is a significant gap between the
independence number and the size of a uniformly random independent set (i.e. at λ = 1 in
the hard-core model).
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Question 2.11. Can we use Theorem 2.9 to improve the current asymptotic upper bound on
R(3, k).

We give three specific conjectures whose resolution would improve the bound.

Conjecture 2.12 ([23]). For any triangle-free graph G, we have

α(G)

|V (G)| · αG(1)
≥ 4/3 .

Conjecture 2.13 ([23]). For any triangle-free graph G of minimum degree d, we have

α(G)

|V (G)| · αG(1)
≥ 2− od(1) .

Conjecture 2.14 ([23]). For any ε > 0, there is λ small enough so that for any triangle-free
graph G we have

α(G)

|V (G)| · αG(λ)
≥ 2− ε .

Conjecture 2.12 would imply a factor 4/3 improvement on the current upper bound for
R(3, k), while Conjectures 2.13 and 2.14 would both imply a factor 2 improvement.

2.3 Summary

• Observables – expectations of locally computable statistics of a Gibbs measure – can be
calculated by taking derivatives of log partition functions. This means that extremal
bounds on observables over a class of graphs imply extremal bounds on partition func-
tions.

• The occupancy fraction of the hard-core model is one such observable and it encodes
both the independence number of a graph and the number of its independent sets.

• By using the properties of a Markov random field we wrote an identity for the occu-
pancy fraction of any d-regular triangle-free graph in terms of the number of uncovered
neighbors of a randomly chosen vertex when choosing a random independent set from
µG. We showed that maximizing and minimizing the occupancy fraction subject to
the constraint imposed by the identity yields two theorems, one on the number of
independent sets and the other on the average size of an independent set.

• This method can be generalized to other partition functions (for matchings, colorings,
the Potts model, etc.) and for other classes of graphs (graphs of a given minimum girth
for instance).

2.4 Exercises

1. Let ik(G) denote the number of independent sets of size k in G (these are the coefficients
of the hard-core partition function).

22



(a) Give a probabilistic interpretation of the quantity FG(k) =
(k+1)ik+1(G)

ik(G) (it is the

expectation of... )

(b) Which d-regular graph minimizes the quantity 1
nFG(k) for all k?

(c) What can you conclude about the coefficients ik(G) and the partition function
ZG(λ) for d-regular graphs from the above?

(d) Does some d-regular graph maximize the quantity 1
nFG(k) for all k? (this is an

open problem!)

2. Deduce Corollary 2.4 from Theorem 2.3 (or Theorem 2.9).

3. Let G be a d-regular graph (not necessarily triangle-free). Pick a random vertex v from
G and pick I according to the hard-core model. For k = 0, . . . , d let pk = P (|I∩N(v)| =
k), the probability that v has exactly k occupied neighbors.

(a) Write an expression for the occupancy fraction αG(λ) in terms of p0 and λ.

(b) Write an expression for the occupancy fraction αG(λ) in terms of p1, . . . , pd, d,
and λ.

(c) Write a lower bound for pk−1 in terms of k, pk, d, and λ. Is this bound tight for
some d-regular graph G?

(d) Maximize the occupancy fraction subject to the one equality constraint and d− 1
inequality constraints given above. What can you conclude about αG(λ) for d-
regular graphs?

(e) (Open problem) Can you used this proof strategy to prove any new results?

23



3 Expansion methods and enumeration

An important class of tools in statistical physics are expansion methods. The basic idea of
expansion methods is to study a system as a perturbation of an easy to understand system.
Expansion methods provide a systematic way to understand corrections in approximating a
complicated system by a simple system.

In this lecture we will focus on expansion methods for understanding the hard-core model
at small fugacities λ. In the following lecture we will show that a wide variety of combina-
torial problems can be mapped to multivariate hard-core models and so are amenable to the
expansion techniques discussed here.

3.1 The cluster expansion

The cluster expansion (or Mayer expansion [52]) is a fundamental tool in statistical physics for
understanding systems in the regime of weak interactions. The basic idea is to represent the
logarithm of a partition function in terms of an infinite series whose terms measure deviations
from a system of non-interacting particles.

Consider the multivariate hard-core model with fugacities {λv}v∈V and partition function

ZG(λ) =
∑

I∈I(G)

∏
v∈I

λv .

The cluster expansion is the multivariate Taylor series for logZG in the variables {λv}v∈V
around ~0. The terms of the cluster expansion admit a convenient combinatorial description
as a sum over connected objects called clusters.

A cluster is an ordered tuple of vertices of G whose induced graph is connected. For
instance in the graph C4, with vertices labeled v1, v2, v2, v4 in cyclic order, (v1, v1, v2) is a
cluster, (v2) is a cluster, (v4, v3, v1) is a cluster, but (v1, v1, v3) is not a cluster since its induced
graph is not connected. The size |Γ| of a cluster Γ is the length of the tuple.

The Ursell function φ(H) of a graph H is

φ(H) =
1

|V (H)|!
∑

A⊆E(H)
spanning, connected

(−1)|A| .

The Ursell function is an evaluation of the Tutte polynomial (scaled by the factor 1/|V (H)|!).
For a cluster Γ, let H(Γ) be the graph whose vertex set is the set of vertices in Γ (with

multiplicities) and with edges between vertices that are neighbors in G and between multiple
copies of the same vertex. For instance if G = C4 as above and Γ = (v1, v1, v2, v3) then H(Γ)
has a triangle formed by (v1, v1, v2) with v2 attached to the 4th vertex v3.

The cluster expansion is the formal power series

logZG(λ) =
∑

clusters Γ

φ(H(Γ))
∏
v∈Γ

λv . (11)

24



Derivations and applications of the cluster expansion (for both discrete and continuous
systems) can be found in [64, 75, 70, 28] among others.

As a simple example take the graph consisting of a single vertex v with fugacity λv = λ.
Then for k ≥ 1 there is a single cluster Γk of size k consisting of k copies of v. The graph

H(Γk) is the clique on k vertices, and the Ursell function is φ(Kk) = (−1)k+1

k . This gives (as
a formal power series)

logZ =
∑
k≥1

(−1)k+1λk

k
,

which is of course the Taylor series for log(1 + λ).

3.2 Convergence criteria

For the series (11) to be useful, we need to know that it converges, and if so, how fast. The
following criteria of Kotecký and Preiss is easy to check and very versatile.

Theorem 3.1 (Kotecký-Preiss [49]). Consider the multivariate hard-core model on a graph
G with (possibly complex) fugacities λv, v ∈ V . Suppose there are functions a(v) ≥ 0, b(v) ≥ 0
so that for all v ∈ V , ∑

u∈N(v)∪{v}

|λu|ea(u)+b(u) ≤ a(v) . (12)

Then the following hold:

1. ZG(λ) 6= 0.

2. The cluster expansion for logZG(λ) converges absolutely.

3. The following tail bound holds. Let b(Γ) =
∑

v∈Γ b(v). Then for all t ≥ 0,∑
clusters Γ
b(Γ)≥t

∣∣∣∣∣φ(H(Γ))
∏
v∈Γ

λv

∣∣∣∣∣ ≤ e−t∑
v∈V

a(v) . (13)

4. The following ‘pinned’ bound holds for all v ∈ V . We say v ∈ N(Γ) if dist(v,Γ) ≤ 1.∑
clusters Γ
v∈N(Γ)
b(Γ)≥t

∣∣∣∣∣φ(H(Γ))
∏
u∈Γ

λu

∣∣∣∣∣ ≤ e−ta(v) . (14)

Conclusion 3 follows from 4 by summing over v. Conclusion 2 follows from 3 by taking
t = 0. Conclusion 1 then follows from 2.

Theorem 3.1 is particularly useful for non-uniform activities. In the next lecture we will
see a general multivariate hard-core model in which vertices come with a notion of ‘size’; the
functions a(·) and b(·) will often be taken proportional to size and the theorem will apply
when activities decay sufficiently fast in the size.

In the case of bounded-degree graphs with uniform activities, Shearer gave a tight bound
for the convergence of the cluster expansion.
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Theorem 3.2 (Shearer [72]). Let G have maximum degree ∆ and suppose |λ| ≤ (∆−1)∆−1

∆∆ .
Then ZG(λ) 6= 0 and the cluster expansion converges absolutely.

For a wide-ranging and detailed discussion of this result, extensions, and consequences,
see the paper of Scott and Sokal [70]. In particular, Theorem 3.2 gives a tight bound on
the probabilities of ‘bad events’ with a ∆-regular dependency graph for which the conclusion
of the Lovás Local Lemma holds. Scott and Sokal generalize this and show a remarkable
connection between the Local Lemma and cluster expansion: the conclusion of the Local
Lemma holds for a dependency graph G and probabilities pv if and only if ZG(p) 6= 0 for p
in a polydisc with radii pv.

3.2.1 Singularities on the negative real axis

Both Theorem 3.1 and 3.2 give conditions for the non-vanishing of ZG(λ) in a polydisc around
the origin in C. Scott and Sokal [70, Theorem 2.10] (see also Groeneveld [36]) show that for
the (multivariate) hard-core model, the closest zero of ZG to the origin is on the negative
real axis (and this is the zero that controls the applicability of the Local Lemma).

On the other hand, for statistical physics and enumeration we care about positive fugaci-
ties (a singularity on the negative real axis does not mark a phase transition). New techniques
for proving absence of phase transition and for approximating Z algorithmically that make
essential use of positive fugacities have been developed in computer science and applied to
statistical physics models (e.g. [79, 62, 59, 55]).

Question 3.3. Are there any applications of the method of Weitz [79] to enumeration prob-
lems in combinatorics?

3.3 Consequences of convergence

A convergent cluster expansion gives a series expansion for logZ but by combining the calcu-
lations in Section 1.7 with the cluster expansion we can obtain many probabilistic properties
of the model as well.

In this section we follow Dobrushin [26] (see also [16] for similar calculations).

We first introduce auxiliary variables. Let

ZG(λ, t) =
∑

I∈I(G)

λ|I|
∏
v∈I

etv

so that ZG(λ) = ZG(λ,~0). We can also write

EG,λ

[∏
v∈I

etv

]
=
∑
I∈I

λ|I|

ZG(λ)

∏
v∈I

etv

=
ZG(λ,~t)

ZG(λ)
,
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and so the joint cumulant generating function of the spins σv (indicators that v ∈ I) is given
by

K(t) = logZG(λ, t)− logZG(λ) . (15)

Similarly the cumulant generating function of |I| is given by

K(t) = logZG(λ, t)− logZG(λ) (16)

where

ZG(λ, t) =
∑

I∈I(G)

λ|I|et|I| .

3.3.1 Cumulants

The cluster expansion of logZG(λ, t) is

logZG(λ, t) =
∑

clusters Γ

φ(H(Γ))λ|Γ|et|Γ| .

Differentiating (16) and evaluating at t = 0 then gives

κ1(|I|) =
∑

clusters Γ

φ(H(Γ))|Γ|λ|Γ| ,

and in general

κk(|I|) =
∑

clusters Γ

φ(H(Γ))|Γ|kλ|Γ| .

3.3.2 Large deviations

Using the cluster expansion we can bound the moment generating function and apply expo-
nential Markov’s inequality to bound the probability of a large deviation in |I|.

3.3.3 Joint cumulants and correlation decay

Finally we can obtain the truncated k-point correlation functions by taking partial derivatives
of the cluster expansion:

logZG(λ, t) =
∑

clusters Γ

φ(H(Γ))λ|Γ|
∏
v∈Γ

etv .

Then we have

µv = κ(v) =
∂

∂tv
logZG(λ, t)

∣∣
t=0

=
∑
Γ3v

φ(H(Γ))λ|Γ|mv(Γ)
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where mv(Γ) is the multiplicity of v in Γ.

The truncated two-point correlation function is

κ(u, v) =
∂2

∂tu∂tv
logZG(λ, t)

∣∣
t=0

=
∑

Γ3u,v
φ(H(Γ))λ|Γ|mv(Γ)mu(Γ) (17)

This allows us to prove exponential decay of correlations.

Lemma 3.4. Suppose the Kotecký–Preiss condition (Theorem 3.1) holds with a(v) = a > 0
and b(v) = b > 0 for all v. Let dist(·, ·) denote the graph distance in G. Then there exists
C = C(a, b) > 0 so that for all u, v ∈ V (G),

|κ(u, v)| ≤ Ce−b·dist(u,v) . (18)

Proof. Since a cluster Γ is a tuple of vertices whose induced graph is connected, if u and v
belong to Γ, we must have |Γ| ≥ dist(u, v) + 1. More generally,

|Γ| ≥ dist(u, v) +mu(Γ) +mv(Γ)− 1 .

Then by (17) and (23) we have

|κ(u, v)| ≤
∑

Γ3u,v

∣∣∣φ(H(Γ))λ|Γ|mv(Γ)mu(Γ)
∣∣∣

≤ a
∑
s,t≥1

e−b·(dist(u,v)+s+t−1)

= aebe−b·dist(u,v)
∑
s,t≥1

e−b(s+t)

≤ Ce−b·dist(u,v)

for some C = C(a, b).

We can prove a similar exponentially small upper bound on truncated k-point correlation
functions. The prefactor Ck will depend on k (and the dependence is exponential). The right
measure of ‘distance’ of subset of k vertices is the the length of the minimum Steiner tree
connecting them (for more see [16]).

3.4 An example

Proposition 3.5. Let G be a ∆-regular triangle-free graph. Then for λ = o(n−1/4),

ZG(λ) = (1 + o(1))(1 + λ)n exp

[
−n∆

2
λ2 +

n∆(∆ + 1))

2
λ3

]
(19)

as n→∞.
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Notice the similarity to Janson’s Inequality. The quantity ZG(λ)
(1+λ)n is exactly the probability

that we obtain an independent set when we take a random subset of V by including each
v with probability λ

1+λ independently. Proposition 3.5 is in fact a direct consequence of a
generalization of Janson’s Inequality due to Mousset, Noever, Panagiotou, and Samotij [56],
that seems to have some similarities to the cluster expansion (see Question 3.6).

Proof of Proposition 3.5. We apply Theorem 3.1 by taking a(v) = 1 and b(v) = w(n) chosen
so that n1/4 � ew(n) � λ−1. We compute∑

u∈N(v)∪{v}

λea(u)+b(u) =
∑

u∈N(v)∪{v}

λe1+w(n) = λ(∆ + 1)e1+w(n) = o(1)

and so for n large enough the condition (3.1) is satisfied. We can conclude that∑
clusters Γ
|Γ|≥4

∣∣∣φ(H(Γ))λ|Γ|
∣∣∣ ≤ ne−4w(n) = o(1) ,

and so to determine the asymptotics of ZG(λ) we only need to consider clusters of size at
most 3. We list the cluters by size:

• There are n clusters of size 1 (each a single vertex)

• There are n clusters of size 2 consisting of two copies of a single vertex; ∆n clusters of
size 2 consisting of (ordered) edges.

• There are n clusters of size 3 consisting of 3 copies of the same vertex; 3∆n clusters
of size three with copies copies of a vertex and one of a vertex joined to it by an edge;
3n∆(∆− 1) clusters consisting of a ‘v’ of three vertices.

Cluster Size Count Ursell function

1 vertex 1 n 1
2 copies of 1 vertex 2 n −1/2

Ordered edge 2 ∆n −1/2
3 copies of 1 vertex 3 n 1/3

An edge with a repeated vertex 3 3∆n 1/3
A path of three vertices 3 3n∆(∆− 1) 1/6

Table 1: A list of clusters up to size 3 in a regular, triangle-free graph

Putting this together we get

logZG(λ) = nλ− nλ
2

2
+ n

λ3

3
− n∆

2
λ2 +

n(2∆ + ∆(∆− 1))

2
λ3

The first three terms give the asymptotics of log(1 + λ)n and so we have

ZG(λ) = (1 + o(1))(1 + λ)n exp

[
−n∆

2
λ2 +

n∆(∆ + 1))

2
λ3

]
.
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3.5 Summary

• The cluster expansion is an infinite series representation of logZ(λ), in fact the multi-
variate Taylor series around 0.

• Convergence of the cluster expansion has been studied extensively in both statistical
physics (for its connection to proving absence of phase transitions) and combinatorics
(for its connection to the Lovász Local Lemma)

• It can also be used to (approximately) enumerate in both combinatorics and computer
science. Statistical physicists are happy with formulas expressed as infinite series. In
combinatorics we might expect

• A convergent cluster expansion implies many nice probabilistic properties: correlation
decay, large deviation bounds, Poisson and Gaussian convergence. A spin system with
a convergent cluster expansion can be thought of as a generalization of a collection of
independent random variables.

Question 3.6. What is the relation between the cluster expansion and Janson’s Inequality?
Can the results of [56] be interpreted in the framework of the (hypergraph) cluster expansion?

3.6 Exercises

1. Let G be a graph consisting of a single edge.

(a) Compute ZG(λ).

(b) Describe the set of clusters of G.

(c) Write down the first few terms of the cluster expansion and then the whole series.

2. Let G be a d-regular graph on n vertices. Let |I| be the size of the random independent
set drawn according to the hard-core model on G at fugacity λ.

(a) Using the cluster expansion and cumulants prove that if λ = c/n then |I| converges
in distribution to a Poisson random variable as n→∞.

(b) Using the cluster expansion and cumulants prove that if n−1 � λ � n−1/3 then
after centering and scaling |I| converges in distribution to a Gaussian random
variable as n→∞. (In fact you can prove it for larger λ as well).

3. We saw in the first set of exercises that the hard-core model on Z1 has no phase
transition. Does the cluster expansion for the hard-core model on the path of n vertices
converge for all λ?

4. Let Gn and Hn be two sequences of d-regular graphs on n vertices. Suppose Gn is
triangle-free, while Hn has δn triangles for some δ > 0 independent of n.

(a) Write down the cluster expansion for log
ZGn (λ)
ZHn (λ) out to clusters of size 4.

(b) Find some ε = ε(d, δ) > 0 so that for λ < ε and n large enough, ZGn(λ) > ZHn(λ).
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4 Combinatorics at low temperatures

4.1 From low temperature to high temperature

In Figure 5 we see the hard-core model on Z2 at two very different values of λ. For small λ,
we see a dilute system: the occupied sites are sparse and disordered. For large λ we see the
opposite picture: the occupied sites are essentially frozen, with occupied odd vertices (colored
blue) or occupied even vertices (colored red) engulfing the system. We see clear evidence of
long-range order.

However, if we focus only on the defects: the red (even) vertices in Figure 5(b) or the
blue (odd) vertices in Figure 5(c) the the picture (at least superficially) looks like the small λ
dilute case. While the spins themselves exhibit long-range order, the defects are sparse and
disordered. Putting in another way: while there is long-range order for large λ, perhaps it is
all explained by by the 50/50 chance that we see an even or odd dominated configuration. If
we condition on the event that there are more odd occupied vertices than even, perhaps we
can regain all the nice probabilistic properties of the dilute case (correlation decay etc.).

It turns out that this is indeed the case for a wide variety of lattice models (hard-core,
Ising, Potts on Zd for example), where absence of phase transition at low enough temperatures
(high enough fugacities) can be proved by treating defects from ground states as a new spin
model. This is captured by the framework of Pirogov-Sinai theory [60] in which the basic
objects are contours separating regions of Zd dominated by different ground states. For the
applications below, however, the simpler polymers models will suffice to understand defect
distributions.

4.2 Abstract polymer models

At a high level we can describe the multivariate hard-core model in terms of two properties:

1. Configurations are collections of objects satisfying a pairwise geometric exclusion con-
straints (vertices cannot be neighbors in G).

2. The weight (probability) of a configuration factorizes over the objects in the collection.

Abstract polymer models provide a way to completely abstract these two properties, and
they provide a natural setting in which to apply the cluster expansion. Abstract polymer
models were introduced by Kotecký and Preiss [49] following previous definition of lattice
polymer models by Gruber and Kunz [37].

Let C be a finite set of polymers. Each polymer comes with a real or complex-valued
weight function wγ . We equip C with a symmetric compatibility relation and write γ ∼ γ′

if polymers γ and γ′ are compatible (and γ � γ′ if they are incompatible). We insist that
γ � γ for all γ ∈ C. The polymer model is defined by the triple (C,∼, w).

The polymer model partition function is

Ξ(C) =
∑
X⊆C

compatible

∏
γ∈X

wγ
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(a) Low density, λ = .05 (b) High density, λ = 4.1

(c) High density, λ = 4.1

Figure 5: Hard-core model on a two-dimensional torus
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where the sum is over subsets of pairwise compatible polymers. If the weight functions are
non-negative we can define the associated Gibbs measure with

µ(X) =

∏
γ∈X wγ

Ξ(C)
.

4.2.1 Examples

Both of the following examples are subgraph polymer models: polymers are subgraphs of some
host graph G (perhaps decorated by a labeling or coloring) and incompatibility is defined by
distance or connectivity in the host graph.

Example: The multivariate hard-core model on G can be viewed as a polymer model with
C = V (G), u ∼ v if dist(u, v) > 1 and wv = λv for all v. Or in other words, the abstract
polymer model is a multivariate hard-core model with vertex set C and graph structure given
by the incompatibility graph.

Example: Consider the q-color ferromagnetic Potts model on a graph G and suppose we
want to model defects from the all ‘red’ ground state. Define polymers to be connected
induced subgraphs of G with vertices of the subgraph colored by the remaining q − 1 non-
red colors (each different coloring of the same subgraph yields a different polymer). Two
polymers γ and γ′ are incompatible if their union is connected. The weight of a polymer is

wγ = e−β|∂eγ|−β|Eb(γ)|

where ∂eγ is the set of edges from γ to γc and Eb(γ) are the bichromatic edges of γ. Then
we have

ZG(q, β) = eβ|E(G)| · Ξ

where ZG(q, β) is the Potts model partition function and Ξ is the polymer model partition
function. Notice that eβ|E(G)| is the weight of the ground state (all red configuration), and so
Ξ captures contributions to ZG from deviations from the ground state (the empty polymer
configuration corresponds to the ground state – no defects). Of course we haven’t really
gained anything from this representation – the polymer model includes all the configurations
that are dominated by blue or by green, etc, while we wanted to capture deviations from the
red ground state. We will see below that we can address this by restricting polymers to be
‘small’.

4.3 Cluster expansion for abstract polymer models

The cluster expansion and Kotecký–Preiss condition for convergence fit very nicely with
abstract polymer models.

A cluster Γ is a tuple of polymers whose incompatibility graph H(Γ) is connected. The
cluster expansion is the multivariate Taylor series of log Ξ(C) in the variables wγ around 0:

log Ξ(C) =
∑

clusters Γ

φ(H(Γ))
∏
γ∈Γ

wγ . (20)

The Kotecký–Preiss result can be stated in this setting.
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Theorem 4.1 (Kotecký-Preiss [49]). Consider an abstract polymer model (C,∼, w) with (pos-
sibly complex) weights wγ. Suppose there are functions a : C → [0,∞), b : C → [0,∞) so that
for all γ ∈ C, ∑

γ′�γ

|wγ′ |ea(γ′)+b(γ′) ≤ a(γ) . (21)

Then the following hold:

1. Ξ(C) 6= 0.

2. The cluster expansion for log Ξ(C) converges absolutely.

3. The following tail bound holds. Let b(Γ) =
∑

γ∈Γ b(γ). Then for all t ≥ 0,

∑
clusters Γ
b(Γ)≥t

∣∣∣∣∣∣φ(H(Γ))
∏
γ∈Γ

wγ

∣∣∣∣∣∣ ≤ e−t
∑
γ∈C

a(γ) . (22)

4. We say γ � Γ if there exists γ′ ∈ Γ with γ � γ′. The following ‘pinned’ bound holds for
all γ ∈ C. ∑

clusters Γ�γ
b(Γ)≥t

∣∣∣∣∣∣φ(H(Γ))
∏
γ′∈Γ

wγ′

∣∣∣∣∣∣ ≤ e−ta(γ) . (23)

4.3.1 Cumulants and joint cumulants

By following the same procedure described in Section 3.3, we can compute cumulants and
understand correlations in the abstract polymer model.

4.4 Low temperature expansions

We can use abstract polymer models to study the defects from a given ground state in a
model at low temperature (strong interactions). The general approach involves three steps:

1. Express small deviations from each ground state of a model as an abstract polymer
model; in particular the weight of a configuration of defects must factorize over poly-
mers.

2. Control the polymer models by proving convergence of the cluster expansion.

3. If there is more than one ground state, approximate the partition function of the full
model as a sum over polymer partition functions for each ground state. Prove that the
weight of configurations that are either missed or double counted is small.

The last step is essentially proving that there is phase coexistence in the model; or in computer
science terms, proving that local Markov chains exhibit slow mixing. It is similar to proving
a stability result in combinatorics. Such a step is not always possible: ground states may not
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be sufficiently separated (for example the ground states of the monomer-dimer model on Zd,
perfect matchings, are not well separated).

If we can carry out these steps we achieve several things:

• A counting result: a good approximation of the partition function Z as the sum of
polymer model partition functions.

• Probabilistic approximation: the Gibbs measure is well approximated by a weighted
mixture of the polymer model Gibbs measures (with the appropriate translation of
defect configurations to spin configurations).

• Conditional correlation decay: while there may be long-range correlations driven by the
multiple ground states, we achieve conditional decay of correlations by conditioning on
being close to one of the ground states.

Next we work through these steps in an example from [43].

4.4.1 Potts model on expander graphs

We continue with the Potts model example. Now we will make two assumptions on G:

1. G has maximum degree ∆

2. G is an α-edge-expander for some α > 0; that is, for all S ⊂ V, |S| ≤ n/2, |∂eS| ≥ α|S|.

For instance, the random ∆-regular graph satisfies these conditions whp.

For large β, we expect configurations to be dominated by one of the q-colors – we expect
to see sparse, disordered deviations from one of the q monochromatic ground states. We will
control these deviations via polymer models and the cluster expansion.

Fix one of the q colors and call it red. As above we define polymers to be connected
induced subgraphs of G with vertices colored by the remaining q − 1 colors; now we insist
that |γ| ≤ n/2 for all polymers γ. Here |γ| denotes the number of vertices of γ. We will show
that for β large enough as a functions of q,∆, α, the Kotecký–Preiss condition is satisfied.
To do this we need one lemma from, e.g. [33]:

Lemma 4.2. Let G be a graph of maximum degree ∆. Then for every v ∈ V (G), the number
of connected induced subgraphs of size k containing v is at most (e∆)k.

This means that for a given polymer γ, the number of polymers γ′ of size k incompatible
with γ is at most (e∆(q − 1))k∆|γ|. The expansion condition gives us an upper bound on
the weight of a polymer:

wγ ≤ e−αβ|γ| .

With these two bounds we can verify the Kotecký–Preiss condition. Let a(γ) = b(γ) = |γ|.
For a given polymer γ,∑

γ′�γ

wγ′e
a(γ′)+b(γ′) ≤

∑
k≥1

(e∆(q − 1))k∆|γ|e−αβke2k
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≤ |γ|∆
∑
k≥1

exp [k (3 + log ∆ + log(q − 1)− αβ)]

which is at most a(γ) = |γ| if β ≥ 4+2 log(q∆)
α .

Now we need to understand the separation of the q ground states. By using the expansion
properties of G we can show that q · eβ|E(G)| · Ξ approximates Z(G) to within e−n relative
error.

Lemma 4.3 ([43]). Let G be a n-vertex, α expander of maximum degree at most ∆. For
β ≥, ..

(1− e−n)q · eβ|E(G)|Ξ ≤ ZG(q, β) ≤ (1 + e−n)q · eβ|E(G)|Ξ

Proving this takes two steps. The first is to show that when β is large Potts configurations
in which no color has a majority have exponentially small relative weight. For r ∈ [q], let
Zr(β) =

∑
σ:|σ−1(r)|>n/2 e

βM(G,σ). Then for β ≥,∑
r∈[q]

Zr(β) = qZr(β) ≤ ZG(q, β) ≤ (1 + e−n)qZr(β) . (24)

The lower bound is immediate since configurations can have at most one majority color. The
upper bound is a simple consequence of expansion: when there is no majority there must
be many bichromatic edges, and these are penalized heavily for large β. In particular, there
must be at least nα

2 bichromatic edges, giving a penalty to each configuration of e−nαβ/2

relative to one of the ground state configurations. There are at most qn configurations with
no majority, and taking β ≥, we have qne−nαβ/2 ≤ e−n. The approximation given by (24)
allows us to partition configurations into q + 1 subsets; one for each color plus an addition
error class (no majority) that we can neglect.

The next step is to show that the color r polymer model partition function Ξr (after
scaling by eβ|E(G)|) approximates Zr(β) up to an exponentially small relative error.

(1− e−n)eβ|E(G)|Ξr ≤ Zr(β) ≤ eβ|E(G)|Ξr .

Every configuration with a majority of vertices colored r is captured by the polymer model
since fewer than n/2 vertices receive a non-r color; this gives the upper bound. To prove the
lower bound we show that configurations in which all non-r connected components are of size
at most n/2 but which do not have a majority r have small total weight; this also follows
from an expansion argument.

4.5 More examples

4.5.1 Independent sets in the hypercube

Let Qd be the Hamming cube {0, 1}d with edges between vectors that differ in exactly one
coordinate. The Hamming cube has two maximum independent sets, each of size 2d−1: O,
the set of vectors whose coordinates sum to an odd number, and E , the set of vectors whose
coordinates sum to an even number. Since any subset of an independent set is an independent
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set, we have a trivial lower bound on the total number of independent sets of the Hamming
cube: i(Qd) ≥ 2 · 22d−1 − 1.

In a classic result, Korshunov and Sapozhenko determined the asymptotics of i(Qd) [48].

Theorem 4.4 (Korshunov and Sapozhenko). As d→∞,

i(Qd) = (2 + o(1))
√
e22d−1

. (25)

Sapozhenko later gave another proof of this result [68] that introduced an influential
variant of the method of graph containers. See also Galvin’s exposition of this result [32].

Galvin [30] later extended Theorem 4.4 to the setting of weighted independent sets, the
hard-core model on Qd. He found the asymptotics of ZQd(λ) for λ >

√
2− 1:

ZQd(λ) = (2 + o(1)) · exp

[
λ

2

(
2

1 + λ

)d]
(1 + λ)2d−1

. (26)

He also found the asymptotics of the logarithm of ZQd(λ) for λ = Ω(d−1/3 log d).

Using the cluster expansion we can obtain asymptotics of ZQd(λ) for all fixed λ [44]. For
instance, if λ > 21/3 − 1,

ZQd(λ) = (2 + o(1)) · exp

[
λ

2

(
2

1 + λ

)d(
1 +

(2λ2 + λ3)d(d− 1)− 2

4(1 + λ)d

)]
(1 + λ)2d−1

. (27)

Compared to (26), the formula (27) has an extra term in the exponent. As we will see this
extra term comes from taking more terms in the cluster expansion of a polymer model and
reflects a structural change in typical independent sets from the hard-core model on Qd when
λ <
√

2−1. More generally, for each k ≥ 1, there is a structural change in typical independent
sets when λ passes 21/k − 1 and this is reflected in the asymptotic formula for ZQd(λ) having
k − 1 terms in the exponent for λ > 21/k − 1.

We sketch a proof of (27) here. We emphasize that an essential part of the proof is
Galvin’s weighted generalization of Sapozhenko’s graph container lemma [30, Lemma 3.10]
which we will take as a black box. What is remarkably fortuitous is how well this lemma
works with the cluster expansion: along with expansion properties of Qd it provides exactly
what is needed to verify the Kotecký–Preiss condition.

In the case of the Potts model we took a ground state to be a single configuration,
the all-red configuration for instance. Here we will do something different and take for a
generalized ground state the set of all independent sets not containing an odd (respectively
even) occupied vertex. There are two such ground states (even and odd dominated) and

each has weight (1 + λ)2d−1
. They overlap on the empty independent set of weight 1. This

notion of a ground state is evident already in the formulas (25), (26), and (27) in the factors

2 · 22d−1
and 2 · (1 + λ)2d−1

respectively. The remaining factors in the formulas capture the
contribution from typical deviations from the two ground states.

We focus now on even-dominated independent sets, and view odd occupied vertices as
defects. To capture the behavior of these defects with a polymer model we fix X ⊆ O and
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Figure 6: 2-linked components of occupied odd vertices, one of size 3 (top) and one of size 1
(bottom). Odd vertices are 2-linked if their neighborhoods overlap.

consider all independents sets I so that I ∩ O = X. The vertices in X contribute a factor
λ|X| to the weight of such I. Any even vertex in the neighborhood of X is blocked from being
in an independent set, and any even vertex not in the neighborhood of X is free to be in or
out of an independent set. This means∑

I:I∩O=X

λII| = λ|X|(1 + λ)|E|−|N(X)|

= (1 + λ)2d−1 λ|X|

(1 + λ)|N(X)| .

We set w(X) = λ|X|

(1+λ)|N(X)| ; this weight measures the penalty relative to the ground state of

the set of defect vertices X. The weight w(X) does not factorize over the vertices of X since
two vertices may or may not have overlapping neighborhoods. However, the weight does
factorize over 2-linked components of X; that is, subsets of X which are connected under
the adjacency relation defined by having overlapping neighborhoods. (Or in other words, a
2-linked component of O is a set S ⊆ O which is connected in the graph Q2

d). We can write

w(X) =
∏
γ∈X

λ|γ|

(1 + λ)|N(γ)|

where the product is over the 2-linked components of X. This is exactly what we need to
define a polymer model: a compatibility relation and a weight that factorizes over pairwise
compatible components.

For the even-dominated polymer model, the set of polymers CE is the set of all 2-linked
components γ from O with |[γ]| ≤ 2d−2 where [γ] = {y ∈ O : N(y) ⊆ N(γ)} (this notion
of the closure of γ appears in [35, 30]). Two polymers γ, γ′ are incompatible if γ ∪ γ′ is

2-linked. The weight function is wγ = λ|γ|

(1+λ)|N(γ)| . The analogous odd-dominated polymer
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model features 2-linked components of even vertices. Let Ξ be the polymer model partition
function (its value is the same for the even and odd models).

The following lemma [44, Lemma 14] shows that 2(1 +λ)2d−1
Ξ is a very good approxima-

tion to the full partition function.

Lemma 4.5. For λ = Ω(log d · d−1/3),∣∣∣logZQd(λ)− log
(

2(1 + λ)2d−1
Ξ
)∣∣∣ = O

(
e−2d/d4

)
.

The proof of Lemma 4.5 is a little more complicated than that of Lemma 4.3. It combines
ideas from the slow-mixing result of Galvin and Tetali [35] with large deviation estimates
from the polymer model itself.

Proving convergence of the cluster expansion is also more complicated than in the case
of expander graphs, and relies crucially on Sapozhenko’s graph containers. In particular,
we will use the following result of Galvin [30], generalizing a lemma from [68] to weighted
independent sets. Let

G(a, b) = {γ ⊆ O : γ 2-linked, |[γ]| = a, |N(γ)| = b}.

Lemma 4.6 ([30]). There exist constants C0, C1 > 0, so that for all λ ≥ C0 log d/d1/3, all
a ≤ 2d−2, ∑

γ∈G(a,b)

λ|γ|

(1 + λ)b
≤ 2d exp

(
−C1(b− a) log d

d2/3

)
.

We also use three different expansion properties of Qd (collected in [30]):

1. For S ⊂ O, |S| ≤ d/10, |N(S)| ≥ d|S| − |S|2.

2. For S ⊂ O, |S| ≤ d4, |N(S)| ≥ d|S|/10.

3. For S ⊂ O, |S| ≤ 2d−2, |N(S)| ≥
(

1 + 1
2
√
d

)
|S|.

For very small sets (polylogarithmic in the size of the graph) the hypercube is a very good
expander, and the expansion-based arguments we used for the Potts model will work here
too. For larger sets, however, the expansion guarantees are much too weak. However the
estimate on the number of polymers containing a given vertex based on Lemma 4.2 is also
far too pessimistic for large 2-linked subsets of Qd. The balance between these two quantities
is captured by Lemma 4.6.

The following [44, Lemma 15] proves convergence of the cluster expansion for the defect
polymer model.

Lemma 4.7. Suppose λ ≥ C0 log d/d1/3. Then with a(γ) = |γ|
d3/2 and

b(γ) =


log(1 + λ)(d|γ| − 3|γ|2)− 7|γ| log d if |γ| ≤ d

10
|γ|d log(1+λ)

20 if d
10 < |γ| ≤ d

4

|γ|
d3/2 if |γ| > d4

the Kotecký–Preiss condition is satisfied.
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The proof of this lemma breaks up the sum
∑

γ′�γ wγ′e
a(γ′)+b(γ′) into three parts, based

on the size of γ′ and then uses expansion properties for the first two sums and the container
lemma, Lemma 4.6, for the third sum.

As a consequence, we obtain a convergent series for log Ξ with bounds on the truncation
error. The larger λ is the fewer terms of the series needed to get the asymptotics of Ξ (and
thus ZQd). In fact, the number of terms of the cluster expansion needed corresponds exactly
to the size of the largest defect polymers typically seen in a random independent set.

In particular, if λ > 21/t − 1, then we have the asymptotic formula

ZQd(λ) = (2 + o(1)) exp

[
t−1∑
k=1

Lk

]
(1 + λ)2d−1

,

where Lk is the sum of cluster expansion terms over clusters of size k. Moreover, when
λ > 21/t− 1 then whp the largest 2-linked occupied component on the side of the bipartition
with fewer occupied vertices is of size at most t− 1.

One area in which combinatorial ideas can be applied to statistical physics questions is
in identifying or bounding the values of parameters at which phase transitions occur. In
particular, the location of the phase transition for the hard-core model on Zd or Qd is an
open problem (and a subtle problem: Brightwell, Häggström, and Winkler [15] show that on
some infinite graphs there may be more than one phase transition in the hard-core model).

See [33, 58, 35] for the best current lower bounds on phase coexistence.

4.5.2 Independent sets in unbalanced bipartite graphs

This example comes from [16] and is in some sense simpler than the two previous examples
since we will work in a setting with a single ground state and so we will not need the step
of showing that the full partition function is well approximated by a sum of polymer model
partition functions. The example also shows that ‘phase coexistence’ – the balancing of
phases around multiple ground states – is really a special phenomenon usually induced by
symmetry, either in the model (the q-colors of the Potts model) or in the host graph (the
symmetry between even and odd vertices in Zd or Qd).

Let G be a bipartite graph with bipartition (L,R) in which every vertex in L has degree
∆L and every vertex in R has degree ∆R. Consider the hard-core model on G in which
vertices in L have fugacity λL and vertices in R have fugacity λR. Let nL = |L|, nR = |R| (in
particular nL∆L = nR∆R). The larger λL is relative to λR and the smaller ∆L is to ∆R, the
more we expect typical independent sets from the model to be dominated by vertices from
L. From this perspective, the ground state is the set of all independent sets that include no
vertex from R; its weight is (1 + λL)nL .

To capture this in a polymer model we proceed as above and define polymers to be 2-
linked components of R (with no restriction on their size), with two polymers incompatible

if their union is 2-linked. The weight of a polymer γ is wγ = λ
|γ|
R (1 + λL)−|N(γ)|. Since we

have no restriction on the size of polymers, we have the identity

ZG(λL, λR) = (1 + λL)nL · ΞG

40



where ΞG is the polymer model partition function.

We can check the Kotecký–Preiss convergence criteria for convergence of the cluster
expansion for log ΞG. We will bound the weight functions using the bi-regularity of G:
|N(γ)| ≥ ∆R

∆L
|γ|, and so

wγ ≤
(

λR
(1 + λL)∆R/∆L

)|γ|
.

We can also bound the number of polymers of size k incompatible with a given polymer γ
by (e∆L∆R)k|γ|. Then with a(γ) = b(γ) = |γ| we have

∑
γ′�γ

wγ′e
a(γ′)+b(γ′) ≤

∑
k≥1

e2k(e∆L∆R)k|γ|
(

λR
(1 + λL)∆R/∆L

)k
= |γ|

∑
k≥1

exp

[
k

(
3 + log ∆L + log ∆R + log λR −

∆R

∆L
log(1 + λL)

)]

4.5.3 Cluster expansion in the canonical ensemble

In these lectures so far we have primarily discussed counting or approximating the number
of independent sets of a graph or the weighted number of independent sets, ZG(λ). Another
very natural quantity to consider is ik(G), the number of independent sets of size k in G,
for various values of k. This parameter is associated to another very natural probabilistic
model: choosing an independent set of size k uniformly at random from all independent sets
of size k in G (assuming ik(G) > 0). In the terminology of statistical physics this model is
the ‘canonical ensemble’ while the hard-core model is the ‘grand canonical ensemble’.

There is a nice formula relating the grand canonical partition function to ik(G) (which
can be thought of as the partition function of the canonical ensemble):

ik(G) =
ZG(λ)

λk
· µG,λ(|I| = k) (28)

where λ is chosen so that EG,λ[|I| = k.

[61]

[21]

4.6 Further applications and open problems

4.6.1 Combinatorics

Sokal [73] (and later Borgs [11]) used abstract polymer models and the cluster expansion to
show that the chromatic polynomial of any graph of max degree ∆ is not zero for q outside
the disc of radius 8∆ in the complex plane.

Applications to enumeration are more recent. As described in Section 4.5.1, the methods
of [44] combine polymer models and the cluster expansion with the graph container method
of Sapozhenko [68] (and extensions by Galvin [30]).
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Balogh, Garcia, Li [4] used a similar combination of tools to find the asymptotics of
the number of independent sets in the middle two layers of the hypercube. In their work
the cluster expansion proves useful since the asymptotic formula involves two terms of the
cluster expansion. Jenssen and Keevash [42] study the very general setting of asymptotic
enumeration of the number of homomorphisms from the hypercube (and other even side-
length tori) to fixed graphs. One of their results is finding the asymptotics of the number of
q-colorings of Qd for all q (following the cases q = 3 by Galvin [29] and q = 4 by Kahn and
Park [47]). Again the cluster expansion proves very useful: while the asymptotic formulas for
q = 3, 4 only involve the first term of the cluster expansion (only the smallest defects matter)
the formulas for q ≥ 5 involve more terms of the cluster expansion and even guessing the
right form would be difficult without the cluster expansion framework.

Question 4.8. Can polymer models and the cluster expansion be used to prove sharper results
in other situations in which the method of graph containers is used? (See [67] for an exposition
of graph containers). Can polymers models be used in concert with the method of hypergraph
containers [5, 69]?

4.6.2 Algorithms

[6, 8, 7, 57, 9]

[40]

[43, 39, 12]

4.6.3 Contour models and Pirogov-Sinai theory

The original application of polymer models was in understanding phase diagrams of statistical
mechanics on lattices. Unlike the examples discussed above, Zd is not a good expander, and
in many cases polymer models by themselves cannot capture the behavior of deviations from
ground states. Instead what is needed is to represent a low temperature model in terms of
contours: boundaries between regions dominated by different ground states. Contours differ
from polymers in that contours This is captured by Pirogov-Sinai theory [60].

See [28, Chapter 7] for a nice introduction to these models. See [51] for the classic
application to the random cluster and Potts models, [13] for an application to prove slow-
mixing bounds, and [40, 12] for algorithmic applications.

Question 4.9. Are there any combinatorial applications of the more sophisticated contour
models of Pirogov-Sinai theory?

4.7 Summary

• Abstract polymer models provide a method for understanding collections of interacting
‘defects’ in a probabilistic model. Often these defects are defined geometrically as some
connected objects in a host graph.

• Formally an abstract polymer model is simply a multivariate hard-core model with
fugacities given by weights and graph structure given by the incompatibility relation.
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The cluster expansion and Kotecký–Preiss convergence criteria apply to the model,
and so under sufficient decay of the weights, we can obtain asymptotics of the partition
function and obtain detailed probabilistic information about the model.

• Using abstract polymer models we can switch from low temperature to high temperature
and analyze the distribution of defects from ground states using the cluster expansion.

• The algorithmic perspective on counting problems can be very useful.

• The combinatorial perspective can be useful in statistical physics.

4.8 Exercises

1. Let G = (V,E) be a graph for q > 0, β > 0 defined the random cluster model, a
probability distribution on subsets of E with partition function given by:

ZG(q, β) =
∑
A⊆E

(eβ − 1)|A|qc(A)

where c(A) is the number of connected components of the graph GA = (V,A).

(a) What are the two possible ground states of the model? (Maximum weight config-
urations)

(b) When β is very small what do you expect typical configurations to look like?

(c) Can you write ZG(q, β) in terms of a polymer model that captures defects from
the small β ground state?

(d) Suppose G has maximum degree ∆. Find β0 = β0(q,∆) so that if β < β0, the
Kotecký–Preiss condition is satisfied for this polymer model.

2. Prove (28). Be sure to use the specific choice of λ.
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5 Sphere packings and kissing numbers

Here we will discuss continuum statistical physics models: models in which particles live in
some region of Euclidean space rather than on vertices of a finite graph. In this setting some
of the things we took for granted in spin models are not at all easy: for instance, determining
the ground states of a model is closely related to the problem of determining the maximum
sphere packing density in Euclidean space. We will focus here on the hard sphere model,
one of the oldest models in statistical mechanics, and one in which ground states are exactly
maximum density sphere packings.

5.1 Gibbs point processes and the hard sphere model

There are several equivalent ways to define the hard sphere model. We will do so via the
Poisson process. Let Λ ⊂ Rd be bounded and let λ ≥ 0. The Poisson process of intensity λ
on Λ is a random point set X ⊂ Λ satisfying two properties:

1. For B ⊆ Λ, the distribution of the number of points in B, |B ∩X|, is Pois(λ|B|) where
|B| is volume of B.

2. For B,B′ ⊂ Λ with B ∩ B′ = ∅, the random variables |X ∩ B| and |X ∩ B′| are
independent.

The Poisson process is the canonical non-interacting spatial point process. There are many
extensions and generalizations of the Poisson process. We may replace the intensity λ with
a measurable intensity function λ, and in this case property 1 is replaced with the property
that |B ∩X| has a Poisson distribution with mean

∫
x∈B λ(x) dx.

A Gibbs point processes generalizes the Poisson process by adding interactions between
points. Given a function H from finite point sets to R∪{+∞}, the Gibbs points process on Λ
with intensity λ, Hamiltonian H, and inverse temperature β is the point process with density
e−βH(X) against the Poisson process of intensity λ on Λ. In other words, the likelihood of
each set of points is reweighted by the factor e−βH(X). The partition function of the Gibbs
point process is

ZΛ(λ) = 1 +
∑
k≥1

λk

k!

∫
Λk
e−βH(x1,...,xk) dx1 · · · dxk .

The most commonly studied models have Hamiltonians defined by a pair potential, a function
φ : Rd → R ∪ {+∞}. Given such a φ, the Hamiltonian is

H(x1, . . . , xk) =
∑
i<j

φ(xi − xj) .

For more about Gibbs point processes see [64, 25].

An important special case of a pair potential in the hard sphere potential. For some
r > 0,

φ(x) =

{
+∞ if ‖x‖ < r

0 if ‖x‖ ≥ r .
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In particular, this potential forbids configurations in which a pair of points is at distance
less than r; or in other words, valid configurations are the centers of a sphere packing of
spheres of radius r/2. Temperature plays no role in the model: the only interaction between
points is the hard-core exclusion. The hard sphere model represents a gas and it expected (in
dimension 3) to exhibit a gas/solid phase transition. The model has been studied since the
1800’s: Boltzmann wrote about computing coefficients of its virial expansion – an expansion
of the pressure in the density. The model plays an important historical role in computer
science as well: the Metropolis algorithm (Markov chain Monte Carlo) was first devised to
sample from the two-dimensional hard sphere model [53].

Despite its long history, the main mathematical question about the model remains open.

Question 5.1. Does the hard sphere model in R3 (or in any other dimension) exhibit a phase
transition?

It is an exercise to show that the one-dimensional hard sphere model does not exhibit a
phase transition. In dimension two, it is believed that there is a phase transition but the
details are debated even in physics [10]. In dimension three it is widely believed there is a
gas/solid phase transition. Dimensions 8 and 24 have very dense maximum sphere packings
(see below) and so one would expect a phase transition there too. In very high dimensions
not very much is known at all – either about potential phase transitions or about the density
and structure of the densest sphere packings.

5.2 Sphere packings in high dimensions

Let Br(x) be the ball of radius r around x ∈ Rd.

Definition 5.2. The maximum sphere packing density of d-dimensional Euclidean space,
θ(d), is

θ(d) = sup
P

lim sup
R→∞

vol(P ∩BR(0))

vol(BR(0))
,

where the supremum is over all sphere packings P of equal-sized spheres.

Of course θ(1) = 1. θ(2) = π/
√

12 = .9068 . . . with the packing given by the hexagonal
lattice and this was proved by Thue in 1894. θ(3) = π/

√
18 = .7404 . . . with the packing

given by stacking hexagonal packings (exactly how you might try to stack oranges); this was
Kepler’s Conjecture and it was only proved in 2005 by Thomas Hales [38].

In a 2016 paper Maryna Viazovska proved that θ(8) is achieved by the E8 lattice [78],
and along with collaborators quickly proved that θ(24) is given by the Leech lattice [17]. All
other dimensions are currently unknown.

What about optimal sphere packings in very high dimensions? Almost nothing is known!
We do not know if the optimal packings are lattice packings or disordered. And our upper
and lower bounds on θ(d) as d→∞ are very far apart.

A lower bound of θ(d) ≥ 2−d is trivial.

Proposition 5.3. In all dimensions θ(d) ≥ 2−d.
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Proof. Take any saturated (maximal) sphere packing, and double all the radii; because the
original packing was saturated, the doubled balls must cover space (or else there would have
been space for another center). Since the fraction of space covered increases by at most a
factor 2d, the original packing must have covered at least a 2−d fraction of space.

Compare Proposition 5.3 (and its proof) to the following bound on the independence
number of a graph. (We use D here to distinguish vertex degree from dimension of Euclidean
space).

Proposition 5.4. For all graphs G of maximum degree D, α(G) ≥ |V (G)|/(D + 1).

Proof. Take any maximal independent set I of G. Let B(I) be the set of vertices in I and
their neighbors. Because I was maximal, we must have B(I) = V (G). And because G has
maximum degree D, |B(I)| ≤ (D + 1)|I|, and so |I| ≥ |V (G)|/(D + 1).

This suggests an analogy between independent sets and sphere packings with the maxi-
mum degree D of a graph equivalent in some sense to the size of the excluded neighborhood
of a center of a sphere packing (2d times the volume of a sphere). Of course the centers of
a sphere packing are in fact an independent set in the infinite graph with vertex set Rd in
which two vertices are joined if their distance is at most 2rd.

The 2−d bound has been improved by a factor of d by Rogers [63], with subsequent
constant factor improvements by Rogers and Davenport [20], Ball [3], Vance [76], and finally
Venkatesh [77] who proved that θ(d) ≥ (65963 + od(1))d · 2−d. Venkatesh also gains an
additional log log d factor in a sparse sequence of dimensions.

An upper bound of 2−(.599···+od(1))·d was proved by Kabatiansky and Levenshtein [45];
there is a recent constant factor improvement by Cohn and Zhao [18].

The lower bounds mentioned above in fact show the existence of a lattice packing of the
given density. This is clearly a stronger result that the existence of some packing, but it is not
clear that by considering lattice packings only we will be able to close the gap in the bounds.
There is a proof of θ(d) ≥ .01 · d2−d by Krivelevich, Litsyn, and Vardy [50] using graph
theory and the above mentioned result of Ajtai, Komlós, and Szemerédi [1], strengthening
this analogy between Ramsey theory and sphere packing. It remains a major open problem
to improve the exponential order of the upper or lower bound on θ(d).

5.2.1 A lower bound on the occupation density of the hard sphere model

Recall the hard sphere model on a bounded, measurable set S ⊂ Rd. It is a random set X of
centers in S at pairwise distance at least 2rd. Its partition function is

ZS(λ) =

∞∑
k=0

λk

k!

∫
Sk

1D(x1,...,xk) dx1 · · · dxk .

The analogue of the occupancy fraction is the expected number of centers per unit of
volume.
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Definition 5.5. The occupation density of the hard sphere model on S at fugacity λ is

αS(λ) =
1

vol(S)
ES,λ|X| .

Theorem 5.6 (Joos, Jenssen, P. [41]). Let Bn be the ball of volume n in Rd. Then for
λ ≥ 3−d/2,

αBn(λ) ≥ (1 + od(1))
log(2/

√
3) · d

2d
.

The corresponding bound θ(d) ≥ (1 + od(1)) log(2/
√

3)·d
2d

follows:

Lemma 5.7. Let Bn be the ball of volume n in Rd. Then for any λ > 0,

θ(d) ≥ lim sup
n→∞

αBn(λ) .

The proof of this lemma uses the fact that volume grows subexponentially fast in Rd.

5.2.2 Proof of Theorem 5.6

Given a set of centers X in S, we can partition S into three sets: points that are covered,
blocked, and free. A point x ∈ S is covered if d(x,X) ≤ rd; it is blocked if d(x,X) ∈ (rd, 2rd]
and free if d(x,X) > 2rd.

Definition 5.8. The expected free volume of the hard sphere model on S is

FVS(λ) =
1

vol(S)

∫
S

Pr
S,λ

[d(x,X) > 2rd] dx .

That is, FVS(λ) is the expected fraction of points in S that could be added to X and still
result in a packing.

Lemma 5.9.
αS(λ) = λ · FVS(λ) .

Proof.

Now consider the following two-part experiment. Pick X from the hard sphere model on
S and choose v ∈ S uniformly at random. Let TS be the externally uncovered volume in the
2rd neighborhood of v; that is,

TS = {x ∈ B2rd(v) : d(x, y) > 2rd ∀ y ∈ X ∩B2rd(v)c} .

Note that only centers outside of the 2rd ball around v affect the set TS .

Lemma 5.10. Let S be bounded and measurable, and consider the above two-part experiment.
Then
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1. αS(λ) = λES,λ
[

1
ZTS

(λ)

]
.

2. αS(λ) ≥ 2−dλES,λ
[
λZ′TS

(λ)

ZTS
(λ)

]
.

Proof.

Lemma 5.11. Let S be bounded and measurable.

1. logZS(λ) ≤ λ · vol(S).

2. αS(λ) ≥ λ · e−λES,λvol(TS).

Finally we need a simple geometric inequality about spheres in Rd.

Lemma 5.12. Let S ⊆ B2rd(0) be measurable. Then

E[vol(B2rd(u) ∩ S)] ≤ 2 · 3d/2 ,

where u is chosen uniformly from S.

Proof.

Proof of Theorem 5.6. Let Bn = Bn1/drd
(0). Let αn = αBn(λ).

We have

αn = λ · EBn,λ
[

1

ZTBn
(λ)

]
≥ λ · e−λEBn,λ logZTBn

(λ)
. (29)

On the other hand,

αn ≥ 2−dEBn,λ

[
λZ ′TBn

(λ)

ZTBn
(λ)

]
(30)

= 2−dEBn,λ[vol(TBn) · αTBn
(λ)] (31)

≥ 2−dEBn,λ
[
λ · vol(TBn) · e−λETBn

vol(U)
]

by Lemma 5.11 part 2 (32)

≥ 2−dEBn,λ
[
logZTBn

(λ) · e−λETBn
vol(U)

]
by Lemma 5.11 part 1 (33)

≥ 2−dEBn,λ
[
logZTBn

(λ) · e−λ2·3d/2
]

by Lemma 5.12 (34)

= 2−d · e−λ2·3d/2EBn,λ logZTBn
(λ) . (35)

Now with z = EBn,λ logZTBn
(λ), we have

αn ≥ inf
z≥0

max{λe−z, z · 2−de−λ2·3d/2} .
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As before, one expression is decreasing in z and the other increasing and so the infimum is
achieved at

z∗ = W

(
λ ·
(

2e−λ2·3d/2
)d)

.

Now take λ = d−23d/2. Then

z∗ = W (λ2de2/d)

= log λ+ d log 2− log d− log log(2/
√

3) + od(1) .

This gives

αn ≥ (1 + od(1))
log(2/

√
3) · d

2d
.

5.3 Summary

•

5.4 Excercises

1.
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