Subexponential size $\mathbb{R}P^n$

Sergey Avvakumov $^{\rm 1}$ joint work with Karim Adiprasito $^{\rm 1,2}$ and Roman Karasev $^{\rm 3,4}$

¹University of Copenhagen
 ²Einstein Institute of Mathematics, Hebrew University of Jerusalem
 ³Moscow Institute of Physics and Technology
 ⁴Institute for Information Transmission Problems RAS

Combinatorics and Geometry Days III, December 2020

Denote by |M| the minimum number of vertices in a triangulation of a manifold M. For a family of manifolds M_n it is interesting to know the asymptotic behavior of $|M_n|$.

A trivial example

$$|S^n|=n+2.$$

Best current bounds for other basic families

$$O(n^2) \le |(S^1)^n| \le 2^{n+1} - 1,$$

 $O(n^2) \le |\mathbb{R}P^n| \le c^n,$
 $O(n^2) \le |\mathbb{C}P^n| \le ?.$

A very simple inductive construction gives

$$|\mathbb{R}P^n| \leq 3 \cdot 2^{n-1}.$$

Using Minkowski sum construction one can prove

 $|\mathbb{R}P^{kn}| \le |\mathbb{R}P^n|^k.$

There is also a very nice inductive construction by Venturello and Zheng with

$$|\mathbb{R}P^{n+2}| \le |\mathbb{R}P^{n+1}| + |\mathbb{R}P^n|.$$

Theorem (Adiprasito, A., Karasev)

For all positive integers n, there exists a triangulation of $\mathbb{R}P^{n-1}$ with at most $e^{(\frac{1}{2}+o(1))\sqrt{n\log n}}$ vertices.

So,

$$O(n^2) \leq |\mathbb{R}P^n| \leq e^{(\frac{1}{2}+o(1))\sqrt{n}\log n}$$

Consider the universal cover of $\mathbb{R}P^n$. It is a triangulation of S^n which is

- symmetric,
- the closed stars of any two opposite vertices are disjoint, equivalently
- the distance (number of edges) between any two opposite vertices is at least 3.

In the other direction, the quotient of any triangulation of S^n with the properties above is a triangulation of $\mathbb{R}P^n$.

$\mathbb{R}P^1$ example

$\mathbb{R}P^1$ non-example

- Start with a crosspolytope with vertices $\{\pm 1, \pm 2, \dots, \pm n\}$. The facet $\{1, 2, \dots, n\}$ is called *positive* and $\{-1, -2, \dots, -n\}$ is called *negative*.
- Triangulate the positive facet with a certain triangulation *T* adding additional vertices. Triangulate the negative facet symmetrically.
- Each side facet is a join σ * (−τ) of faces σ and −τ belonging to the positive and the negative facet, resp. Moreover σ and τ are such that σ ∩ τ = Ø.
 We have already triangulated both σ and −τ, so triangulate
 - $\sigma * (-\tau)$ as their join without adding new vertices.

Our construction

Our construction

Our construction

Suppose we are given triangulated simplices (or simplicial complexes in general) σ and τ .

The join $\sigma * \tau$ is the triangulated in the following way: for every pair of simplices $\sigma' \subset \sigma$ and $\tau' \subset \tau$ the triangulation of $\sigma * \tau$ contains a simplex $\sigma' * \tau'$.

Triangulation of a join

Triangulation of a join

Triangulation of a join

Suppose that in our refining of the crosspolytope triangulation there is a path $x \to y \to -x$ between x and -x. Wlog both x and y are in the positive facet. Then the edge $y \to -x$ is in a side facet $\sigma * (-\tau)$ where $\sigma \cap \tau = \emptyset$.

So, triangulation T of the positive facet is *good* if for any two faces σ, τ with $\sigma \cap \tau = \emptyset$ there is no edge between σ and τ .

What do we need from T?

Bad triangulation

What do we need from T?

Good triangulation

Spherical interpretation

In the spherical simplex, for any $\sigma \cap \tau = \emptyset$ any edge between σ and τ has length 90°.

So, T is good if all the edges are shorter than 90°.

The vertices of T will be *some* of the vertices of the barycentric subdivision.

Vertices are identified with the subsets of $\{1, 2, \ldots, n\}$...

The vertices of T will be *some* of the vertices of the barycentric subdivision.

... and with unit vectors.

Construction of T

Take a certain subset $V \subset 2^{|n|}$ - some of the vertices of the barycentric subdivision. Take T to be the *Delaunay triangulation* on V.

Construction of T

Take a certain subset $V \subset 2^{|n|}$ - some of the vertices of the barycentric subdivision. Take T to be the *Delaunay triangulation* on V.

The edges of T are shorter than 90° if for any $A, B \in V$ such that $\langle A, B \rangle = 0$ and any $X \in S^{n-1}$ there is $C \in V$ such that $\langle X, C \rangle > \langle X, A \rangle$ or $\langle X, C \rangle > \langle X, B \rangle$.

We can assume that the coordinates of X are *non-negative*.

- $\{i\} \in V$ for all $i \in \{1, \ldots, n\}$.
- If $A \in V$ and |A| > 1, then $A \setminus i \in V$ for any $i \in A$.
- For every $A, B \in V$ with $A \cap B = \emptyset$, there are $i \in A$ and $j \in B$ such that either

•
$$A \sqcup j \in V$$
 and $B \sqcup i \setminus j \in V$,

or

•
$$B \sqcup i \in V$$
 and $A \sqcup j \setminus i \in V$.

Wlog

Wlog

$$A = \frac{1}{\sqrt{a}} \dots \frac{1}{\sqrt{a}} \dots \frac{1}{\sqrt{a}} 0 \dots 0$$

$$B = 0 \dots 0 \longrightarrow \frac{1}{\sqrt{b}}$$

$$X = x_1 \le \dots \le x_i \le \dots \le x_a \quad x_{a+1} \dots \quad x_j$$

Assume $x_j < x_i$. Then $C := B \sqcup i \setminus j \in V$ is closer to X than B is. So,

 $x_j \ge x_i \ge x_1.$

Consider $C_1 := A \setminus 1 \in V$ and $C_2 := A \sqcup j \in V$.

$$A = \frac{1}{\sqrt{a}} \dots \frac{1}{\sqrt{a}} \dots \frac{1}{\sqrt{a}} 0 \dots 0 0$$

$$C_1 = 0 \dots \frac{1}{\sqrt{a-1}} \dots \frac{1}{\sqrt{a-1}} 0 \dots 0 0$$

$$C_2 = \frac{1}{\sqrt{a+1}} \dots \frac{1}{\sqrt{a+1}} \dots \frac{1}{\sqrt{a+1}} 0 \dots 0 \frac{1}{\sqrt{a+1}}$$

$$X = x_1 \le \dots \le x_i \le \dots \le x_a \quad x_{a+1} \dots \quad x_{j-1} \quad x_j$$

We have

$$\langle X, A \rangle = \frac{x_1 + \dots + x_a}{\sqrt{a}},$$

$$\langle X, C_1 \rangle = \frac{x_2 + \dots + x_a}{\sqrt{a - 1}},$$

$$\langle X, C_2 \rangle = \frac{(x_1 + x_j) + x_2 + \dots + x_a}{\sqrt{a + 1}} \ge \frac{2x_1 + x_2 + \dots + x_a}{\sqrt{a + 1}}.$$

$$\langle X, A \rangle = rac{x_1 + \dots + x_a}{\sqrt{a}}, \langle X, C_1 \rangle = rac{x_2 + \dots + x_a}{\sqrt{a - 1}},$$

 $\langle X, C_2 \rangle \ge rac{2x_1 + x_2 + \dots + x_a}{\sqrt{a + 1}}.$

Denote

$$f(\alpha) := \frac{\alpha x_1 + x_2 + \dots + x_a}{\sqrt{a - 1 + \alpha}} =$$
$$= x_1 \sqrt{a - 1 + \alpha} + \frac{(x_2 - x_1) + \dots + (x_a - x_1)}{\sqrt{a - 1 + \alpha}}.$$

We have that

$$\langle X,A\rangle = f(1), \quad \langle X,C_1\rangle = f(0), \quad \langle X,C_2\rangle \geq f(2).$$

Proof of sufficiency, end

$$\langle X,A
angle=f(1),\quad \langle X,C_1
angle=f(0),\quad \langle X,C_2
angle\geq f(2).$$

$$f(\alpha) = x_1\sqrt{a-1+\alpha} + \frac{(x_2-x_1)+\cdots+(x_a-x_1)}{\sqrt{a-1+\alpha}}$$

From $0 \le x_1 \le x_2 \cdots \le x_a$ we have that f as a function of $\sqrt{a-1+\alpha}$ is either

convex,

- or linear non-constant,
- or zero.

In the first two cases either $\langle X, C_1 \rangle \ge \langle X, A \rangle$ or $\langle X, C_2 \rangle \ge \langle X, A \rangle$. In the last case, $\langle X, A \rangle = 0$ and there is a singleton $C \in V$ such that $\langle X, C \rangle > 0$.

Partition the set $\{1, \ldots, n\}$ into several disjoint *groups*.

Let V be the set of subsets of $\{1, \ldots, n\}$, whose intersection with every group, except maybe one, contains not more than one element.

Clearly,

- $\{i\} \in V$ for all $i \in \{1, \ldots, n\}$.
- If $A \in V$ and |A| > 1, then $A \setminus i \in V$ for any $i \in A$.

Let us check the last required property of V. Case 1:

Let us check the last required property of V. Case 2:

We use k groups of size roughly s = n/k. For an element $A \in V$ we have

- k choices of the maximal group of A,
- at most 2^s choices of which elements of the maximal group to add to *A*,
- at most s + 1 choices for each of the k − 1 elements of A in the non-maximal groups.

In total we get

$$|V| < 2^{s}(s+1)^{k-1}k.$$

$$|V| < 2^{s}(s+1)^{k-1}k.$$

Choosing $k = s = \sqrt{n}$ we get $|V| < e^{(rac{1}{2} + o(1))\sqrt{n}\log n}.$

Theorem (Arnoux, Marin)

Let P be a simplicial complex with a 1-cocycle ω such that $\omega^n \neq 0$. Then P has at least $\frac{(n+2)(n+1)}{2}$ vertices.

Corollary

$$|\mathbb{R}P^n| \geq \frac{(n+2)(n+1)}{2}$$

Suppose that the set of vertices of P is decomposed into two disjoint sets. Denote by X and Y the subcomplexes induced by the sets. We have that

$$egin{aligned} X &\sim P \setminus Y, \ Y &\sim P \setminus X, \ P &= (P \setminus X) \cup (P \setminus Y). \end{aligned}$$

Proof of the lower bound

Complex *P* has a non-trivial *n*-cocycle ω^n . So, there is at least one *n*-simplex $\Delta^n \subset P$.

Take
$$Y = \Delta^n$$
. Then $\omega|_{P \setminus X} = \omega|_Y = 0$.

Suppose that
$$(\omega|_X)^{n-1} = (\omega|_{P \setminus Y})^{n-1} = 0$$
. Then from $P = (P \setminus X) \cup (P \setminus Y)$ we get that $\omega \cdot \omega^{n-1} = \omega^n = 0$, contradiction.

So, $(\omega|_X)^{n-1} \neq 0$. By induction, X has at least $\frac{(n+1)n}{2}$ vertices. So, P has at least $\frac{(n+1)n}{2} + (n+1) = \frac{(n+2)(n+1)}{2}$ vertices.

Theorem (Bárány, Lovász)

Any symmetric triangulation of S^n has at least 2^{n+1} facets.

Embed the given triangulated S^n into the unit sphere $S^{|V/2|-1}$, where V is the number of vertices in the triangulation.

Proof of the facets lower bound, end

By the Borsuk–Ulam theorem, any central hyperplane of codimension n intersects at least two facets.

By the Crofton formula, the total *n*-dimensional volume of the embedded S^n is at least the same as the volume of the unit *n*-sphere.

The *n*-volume of each facet is $\frac{1}{2^{n+1}}$. So, the total number of facets is at least 2^{n+1} .