Subexponential size $\mathbb{R} P^{n}$

Sergey Avvakumov ${ }^{1}$
 joint work with Karim Adiprasito ${ }^{1,2}$ and Roman Karasev ${ }^{3,4}$

${ }^{1}$ University of Copenhagen
${ }^{2}$ Einstein Institute of Mathematics, Hebrew University of Jerusalem
${ }^{3}$ Moscow Institute of Physics and Technology
${ }^{4}$ Institute for Information Transmission Problems RAS

Combinatorics and Geometry Days III, December 2020

Sizes of manifold's triangulations

Denote by $|M|$ the minimum number of vertices in a triangulation of a manifold M. For a family of manifolds M_{n} it is interesting to know the asymptotic behavior of $\left|M_{n}\right|$.
A trivial example

$$
\left|S^{n}\right|=n+2
$$

Best current bounds for other basic families

$$
\begin{aligned}
& O\left(n^{2}\right) \leq\left|\left(S^{1}\right)^{n}\right| \leq 2^{n+1}-1 \\
& O\left(n^{2}\right) \leq\left|\mathbb{R} P^{n}\right| \leq c^{n} \\
& O\left(n^{2}\right) \leq\left|\mathbb{C} P^{n}\right| \leq ?
\end{aligned}
$$

Inductive constructions of $\mathbb{R} P^{n}$

A very simple inductive construction gives

$$
\left|\mathbb{R} P^{n}\right| \leq 3 \cdot 2^{n-1}
$$

Using Minkowski sum construction one can prove

$$
\left|\mathbb{R} P^{k n}\right| \leq\left|\mathbb{R} P^{n}\right|^{k}
$$

There is also a very nice inductive construction by Venturello and Zheng with

$$
\left|\mathbb{R} P^{n+2}\right| \leq\left|\mathbb{R} P^{n+1}\right|+\left|\mathbb{R} P^{n}\right|
$$

Our result

Theorem (Adiprasito, A., Karasev)

For all positive integers n, there exists a triangulation of $\mathbb{R} P^{n-1}$ with at most $e^{\left(\frac{1}{2}+o(1)\right) \sqrt{n} \log n}$ vertices.

So,

$$
O\left(n^{2}\right) \leq\left|\mathbb{R} P^{n}\right| \leq e^{\left(\frac{1}{2}+o(1)\right) \sqrt{n} \log n} .
$$

$\mathbb{R} P^{n}$ is a symmetric sphere of diameter at least 3

Consider the universal cover of $\mathbb{R} P^{n}$. It is a triangulation of S^{n} which is

- symmetric,
- the closed stars of any two opposite vertices are disjoint, equivalently
- the distance (number of edges) between any two opposite vertices is at least 3 .
In the other direction, the quotient of any triangulation of S^{n} with the properties above is a triangulation of $\mathbb{R} P^{n}$.

$\mathbb{R} P^{1}$ example

$\mathbb{R} P^{1}$ non-example

$\mathbb{R} P^{2}$ example

Our construction

- Start with a crosspolytope with vertices $\{ \pm 1, \pm 2, \ldots, \pm n\}$. The facet $\{1,2, \ldots, n\}$ is called positive and $\{-1,-2, \ldots,-n\}$ is called negative.
- Triangulate the positive facet with a certain triangulation T adding additional vertices. Triangulate the negative facet symmetrically.
- Each side facet is a join $\sigma *(-\tau)$ of faces σ and $-\tau$ belonging to the positive and the negative facet, resp. Moreover σ and τ are such that $\sigma \cap \tau=\emptyset$.
We have already triangulated both σ and $-\tau$, so triangulate $\sigma *(-\tau)$ as their join without adding new vertices.

Our construction

Our construction

Our construction

Triangulation of a join

Suppose we are given triangulated simplices (or simplicial complexes in general) σ and τ.

The join $\sigma * \tau$ is the triangulated in the following way: for every pair of simplices $\sigma^{\prime} \subset \sigma$ and $\tau^{\prime} \subset \tau$ the triangulation of $\sigma * \tau$ contains a simplex $\sigma^{\prime} * \tau^{\prime}$.

Triangulation of a join

Triangulation of a join

Triangulation of a join

What do we need from T ?

Suppose that in our refining of the crosspolytope triangulation there is a path $x \rightarrow y \rightarrow-x$ between x and $-x$. Wlog both x and y are in the positive facet. Then the edge $y \rightarrow-x$ is in a side facet $\sigma *(-\tau)$ where $\sigma \cap \tau=\emptyset$.

So, triangulation T of the positive facet is good if for any two faces σ, τ with $\sigma \cap \tau=\emptyset$ there is no edge between σ and τ.

What do we need from T ?

Bad triangulation

What do we need from T ?

Good triangulation

Spherical interpretation

In the spherical simplex, for any $\sigma \cap \tau=\emptyset$ any edge between σ and τ has length 90°.

So, T is good if all the edges are shorter than 90°.

Vertex notation

The vertices of T will be some of the vertices of the barycentric subdivision.

Vertices are identified with the subsets of $\{1,2, \ldots, n\} \ldots$

Vertex notation

The vertices of T will be some of the vertices of the barycentric subdivision.
... and with unit vectors.

Construction of T

Take a certain subset $V \subset 2^{|n|}$ - some of the vertices of the barycentric subdivision. Take T to be the Delaunay triangulation on V.

Construction of T

Take a certain subset $V \subset 2^{|n|}$ - some of the vertices of the barycentric subdivision. Take T to be the Delaunay triangulation on V.

What do we need from V ?

Taking as V all the vertices and all the edges midpoints is not enough. Consider the tetrahedron

What do we need from V ?

Taking as V all the vertices and all the edges midpoints is not enough. Consider the tetrahedron

What do we need from V ?

Taking as V all the vertices and all the edges midpoints is not enough. Consider the tetrahedron

What do we need from V ?

Taking as V all the vertices and all the edges midpoints is not enough. Consider the tetrahedron

What do we need from V ?

Taking as V all the vertices and all the edges midpoints is not enough. Consider the tetrahedron

What do we need from V ?

Taking as V all the vertices and all the edges midpoints is not enough. Consider the tetrahedron

What do we need from V ?

Taking as V all the vertices and all the edges midpoints is not enough. Consider the tetrahedron

What do we need from V ?

The edges of T are shorter than 90° if for any $A, B \in V$ such that $\langle A, B\rangle=0$ and any $X \in S^{n-1}$ there is $C \in V$ such that $\langle X, C\rangle>\langle X, A\rangle$ or $\langle X, C\rangle>\langle X, B\rangle$.

We can assume that the coordinates of X are non-negative.

Sufficient conditions on V

- $\{i\} \in V$ for all $i \in\{1, \ldots, n\}$.
- If $A \in V$ and $|A|>1$, then $A \backslash i \in V$ for any $i \in A$.
- For every $A, B \in V$ with $A \cap B=\emptyset$, there are $i \in A$ and $j \in B$ such that either
- $A \sqcup j \in V$ and $B \sqcup i \backslash j \in V$,
or
- $B \sqcup i \in V$ and $A \sqcup j \backslash i \in V$.

Proof of sufficiency

Wlog

$$
\begin{array}{llclcccc}
A= & \frac{1}{\sqrt{a}} & \ldots & \frac{1}{\sqrt{a}} & \ldots & \frac{1}{\sqrt{a}} & 0 & \ldots \\
B & =0 & \ldots & 0 & \ldots & 0 & * & \ldots \\
X & =x_{1} \leq & \ldots & \leq x_{i} \leq & \ldots & \leq x_{a} & x_{a+1} & \ldots \\
\sqrt{b} & x_{j}
\end{array}
$$

Proof of sufficiency

Wlog

$$
\begin{array}{llcccccc}
A= & \frac{1}{\sqrt{a}} & \ldots & \frac{1}{\sqrt{a}} & \ldots & \frac{1}{\sqrt{a}} & 0 & \ldots \\
B & =0 & \ldots & 0 & \ldots & 0 & * & \ldots \\
& \frac{1}{\sqrt{b}} \\
X & =x_{1} \leq \ldots & \leq x_{i} \leq & \ldots & \leq x_{a} & x_{a+1} & \ldots & x_{j}
\end{array}
$$

Assume $x_{j}<x_{i}$. Then $C:=B \sqcup i \backslash j \in V$ is closer to X than B is. So,

$$
x_{j} \geq x_{i} \geq x_{1}
$$

Proof of sufficiency

Consider $C_{1}:=A \backslash 1 \in V$ and $C_{2}:=A \sqcup j \in V$.

We have

$$
\begin{aligned}
\langle X, A\rangle & =\frac{x_{1}+\cdots+x_{a}}{\sqrt{a}} \\
\left\langle X, C_{1}\right\rangle & =\frac{x_{2}+\cdots+x_{a}}{\sqrt{a-1}}
\end{aligned}
$$

$$
\left\langle X, C_{2}\right\rangle=\frac{\left(x_{1}+x_{j}\right)+x_{2}+\cdots+x_{a}}{\sqrt{a+1}} \geq \frac{2 x_{1}+x_{2}+\cdots+x_{a}}{\sqrt{a+1}}
$$

$$
\begin{aligned}
& A=\begin{array}{lllllllll}
\frac{1}{\sqrt{a}} & \cdots & \frac{1}{\sqrt{a}} & \ldots & \frac{1}{\sqrt{a}} & 0 & \ldots & 0 & 0
\end{array} \\
& C_{1}=0 \quad \cdots \quad \frac{1}{\sqrt{a-1}} \quad \cdots \quad \frac{1}{\sqrt{a-1}} \quad 0 \quad \ldots \quad 0 \quad 0
\end{aligned}
$$

$$
\begin{aligned}
& X=x_{1} \leq \ldots \leq x_{i} \leq \ldots \leq x_{a} \quad x_{a+1} \ldots x_{j-1} x_{j}
\end{aligned}
$$

Proof of sufficiency

$$
\begin{aligned}
\langle X, A\rangle= & \frac{x_{1}+\cdots+x_{a}}{\sqrt{a}},\left\langle X, C_{1}\right\rangle=\frac{x_{2}+\cdots+x_{a}}{\sqrt{a-1}} \\
& \left\langle X, C_{2}\right\rangle \geq \frac{2 x_{1}+x_{2}+\cdots+x_{a}}{\sqrt{a+1}}
\end{aligned}
$$

Denote

$$
\begin{gathered}
f(\alpha):=\frac{\alpha x_{1}+x_{2}+\cdots+x_{a}}{\sqrt{a-1+\alpha}}= \\
=x_{1} \sqrt{a-1+\alpha}+\frac{\left(x_{2}-x_{1}\right)+\cdots+\left(x_{a}-x_{1}\right)}{\sqrt{a-1+\alpha}}
\end{gathered}
$$

We have that

$$
\langle X, A\rangle=f(1), \quad\left\langle X, C_{1}\right\rangle=f(0), \quad\left\langle X, C_{2}\right\rangle \geq f(2)
$$

Proof of sufficiency, end

$$
\begin{aligned}
& \langle X, A\rangle=f(1), \quad\left\langle X, C_{1}\right\rangle=f(0), \quad\left\langle X, C_{2}\right\rangle \geq f(2) \\
& f(\alpha)=x_{1} \sqrt{a-1+\alpha}+\frac{\left(x_{2}-x_{1}\right)+\cdots+\left(x_{a}-x_{1}\right)}{\sqrt{a-1+\alpha}}
\end{aligned}
$$

From $0 \leq x_{1} \leq x_{2} \cdots \leq x_{a}$ we have that f as a function of $\sqrt{a-1+\alpha}$ is either

- convex,
- or linear non-constant,
- or zero.

In the first two cases either $\left\langle X, C_{1}\right\rangle \geq\langle X, A\rangle$ or $\left\langle X, C_{2}\right\rangle \geq\langle X, A\rangle$. In the last case, $\langle X, A\rangle=0$ and there is a singleton $C \in V$ such that $\langle X, C\rangle>0$.

Constructing a small set V

Partition the set $\{1, \ldots, n\}$ into several disjoint groups.
Let V be the set of subsets of $\{1, \ldots, n\}$, whose intersection with every group, except maybe one, contains not more than one element.

Clearly,

- $\{i\} \in V$ for all $i \in\{1, \ldots, n\}$.
- If $A \in V$ and $|A|>1$, then $A \backslash i \in V$ for any $i \in A$.

Constructing a small set V

Let us check the last required property of V.
Case 1:

$$
\begin{aligned}
& A \stackrel{i}{\bullet} \bullet \bullet|\bullet \bullet \bullet \bullet| \bullet \bullet \bullet \mid \bullet \bullet \bullet \bullet \\
& B \bullet \bullet \bullet|\bullet \bullet \bullet \bullet| \bullet \bullet \bullet \mid \bullet \bullet \bullet \\
& A \sqcup j \bullet \bullet \bullet \bullet|\bullet \bullet \bullet \circ| \bullet \bullet \bullet \mid \circ \circ \circ \circ \\
& B \sqcup i \backslash j \bullet \bullet \bullet \bullet|\bullet \bullet \bullet| \bullet \bullet \bullet \mid \bullet \bullet \bullet
\end{aligned}
$$

Constructing a small set V

Let us check the last required property of V.
Case 2:

$$
\begin{aligned}
& A \sqcup j \bullet \bullet \bullet \bullet|\bullet \bullet \bullet \bullet \bullet \bullet \bullet| \bullet \bullet \bullet \bullet
\end{aligned}
$$

Size of V

We use k groups of size roughly $s=n / k$. For an element $A \in V$ we have

- k choices of the maximal group of A,
- at most 2^{s} choices of which elements of the maximal group to add to A,
- at most $s+1$ choices for each of the $k-1$ elements of A in the non-maximal groups.
In total we get

$$
|V|<2^{s}(s+1)^{k-1} k
$$

Size of V

$$
|V|<2^{5}(s+1)^{k-1} k .
$$

Choosing $k=s=\sqrt{n}$ we get

$$
|V|<e^{\left(\frac{1}{2}+o(1)\right) \sqrt{n} \log n}
$$

Lower bound

Theorem (Arnoux, Marin)
Let P be a simplicial complex with a 1-cocycle ω such that $\omega^{n} \neq 0$. Then P has at least $\frac{(n+2)(n+1)}{2}$ vertices.

Corollary

$\left|\mathbb{R} P^{n}\right| \geq \frac{(n+2)(n+1)}{2}$.

Proof of the lower bound

Suppose that the set of vertices of P is decomposed into two disjoint sets. Denote by X and Y the subcomplexes induced by the sets. We have that

$$
\begin{aligned}
& X \sim P \backslash Y, \\
& Y \sim P \backslash X, \\
& P=(P \backslash X) \cup(P \backslash Y) .
\end{aligned}
$$

Proof of the lower bound

Proof of the lower bound, end

Complex P has a non-trivial n-cocycle ω^{n}. So, there is at least one n-simplex $\Delta^{n} \subset P$.

Take $Y=\Delta^{n}$. Then $\left.\omega\right|_{P \backslash X}=\left.\omega\right|_{Y}=0$.
Suppose that $\left(\left.\omega\right|_{X}\right)^{n-1}=\left(\left.\omega\right|_{P \backslash Y}\right)^{n-1}=0$. Then from
$P=(P \backslash X) \cup(P \backslash Y)$ we get that $\omega \cdot \omega^{n-1}=\omega^{n}=0$, contradiction.
So, $\left(\left.\omega\right|_{X}\right)^{n-1} \neq 0$. By induction, X has at least $\frac{(n+1) n}{2}$ vertices. So, P has at least $\frac{(n+1) n}{2}+(n+1)=\frac{(n+2)(n+1)}{2}$ vertices.

Facets lower bound

Theorem (Bárány, Lovász)
Any symmetric triangulation of S^{n} has at least 2^{n+1} facets.

Proof of the facets lower bound

Embed the given triangulated S^{n} into the unit sphere $S^{|V / 2|-1}$, where V is the number of vertices in the triangulation.

Proof of the facets lower bound, end

By the Borsuk-Ulam theorem, any central hyperplane of codimension n intersects at least two facets.

By the Crofton formula, the total n-dimensional volume of the embedded S^{n} is at least the same as the volume of the unit n-sphere.

The n-volume of each facet is $\frac{1}{2^{n+1}}$. So, the total number of facets is at least 2^{n+1}.

