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Sizes of manifold’s triangulations

Denote by |M | the minimum number of vertices in a triangulation of
a manifold M . For a family of manifolds Mn it is interesting to know
the asymptotic behavior of |Mn|.
A trivial example

|Sn| = n + 2.

Best current bounds for other basic families

O(n2) ≤ |(S1)n| ≤ 2n+1 − 1,

O(n2) ≤ |RPn| ≤ cn,

O(n2) ≤ |CPn| ≤?.



Inductive constructions of RPn

A very simple inductive construction gives

|RPn| ≤ 3 · 2n−1.

Using Minkowski sum construction one can prove

|RPkn| ≤ |RPn|k .

There is also a very nice inductive construction by Venturello and
Zheng with

|RPn+2| ≤ |RPn+1|+ |RPn|.



Our result

Theorem (Adiprasito, A., Karasev)

For all positive integers n, there exists a triangulation of RPn−1 with
at most e(

1
2
+o(1))

√
nlog n vertices.

So,
O(n2) ≤ |RPn| ≤ e(

1
2
+o(1))

√
nlog n.



RPn is a symmetric sphere of diameter at least 3

Consider the universal cover of RPn. It is a triangulation of Sn which
is

symmetric,

the closed stars of any two opposite vertices are disjoint,
equivalently

the distance (number of edges) between any two opposite
vertices is at least 3.

In the other direction, the quotient of any triangulation of Sn with
the properties above is a triangulation of RPn.
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Our construction

Start with a crosspolytope with vertices {±1,±2, . . . ,±n}. The
facet {1, 2, . . . , n} is called positive and {−1,−2, . . . ,−n} is
called negative.

Triangulate the positive facet with a certain triangulation T
adding additional vertices. Triangulate the negative facet
symmetrically.

Each side facet is a join σ ∗ (−τ) of faces σ and −τ belonging
to the positive and the negative facet, resp. Moreover σ and τ
are such that σ ∩ τ = ∅.
We have already triangulated both σ and −τ , so triangulate
σ ∗ (−τ) as their join without adding new vertices.
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Triangulation of a join

Suppose we are given triangulated simplices (or simplicial complexes
in general) σ and τ .

The join σ ∗ τ is the triangulated in the following way: for every pair
of simplices σ′ ⊂ σ and τ ′ ⊂ τ the triangulation of σ ∗ τ contains a
simplex σ′ ∗ τ ′.



Triangulation of a join
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What do we need from T ?

Suppose that in our refining of the crosspolytope triangulation there
is a path x → y → −x between x and −x . Wlog both x and y are in
the positive facet. Then the edge y → −x is in a side facet σ ∗ (−τ)
where σ ∩ τ = ∅.

So, triangulation T of the positive facet is good if for any two faces
σ, τ with σ ∩ τ = ∅ there is no edge between σ and τ .



What do we need from T ?

Bad triangulation



What do we need from T ?

Good triangulation



Spherical interpretation

In the spherical simplex, for any σ ∩ τ = ∅ any edge between σ and τ
has length 90◦.

90
◦

90
◦

So, T is good if all the edges are shorter than 90◦.



Vertex notation

The vertices of T will be some of the vertices of the barycentric
subdivision.

Vertices are identified with the subsets of {1, 2, . . . , n} ...
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Vertex notation

The vertices of T will be some of the vertices of the barycentric
subdivision.

... and with unit vectors.
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Construction of T

Take a certain subset V ⊂ 2|n| - some of the vertices of the
barycentric subdivision. Take T to be the Delaunay triangulation on
V .
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What do we need from V ?

Taking as V all the vertices and all the edges midpoints is not
enough. Consider the tetrahedron
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What do we need from V ?

The edges of T are shorter than 90◦ if for any A,B ∈ V such that
〈A,B〉 = 0 and any X ∈ Sn−1 there is C ∈ V such that
〈X ,C 〉 > 〈X ,A〉 or 〈X ,C 〉 > 〈X ,B〉.
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We can assume that the coordinates of X are non-negative.



Sufficient conditions on V

{i} ∈ V for all i ∈ {1, . . . , n}.
If A ∈ V and |A| > 1, then A \ i ∈ V for any i ∈ A.

For every A,B ∈ V with A ∩ B = ∅, there are i ∈ A and j ∈ B
such that either

A t j ∈ V and B t i \ j ∈ V ,

or

B t i ∈ V and A t j \ i ∈ V .



Proof of sufficiency
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Assume xj < xi . Then C := B t i \ j ∈ V is closer to X than B is.
So,

xj ≥ xi ≥ x1.



Proof of sufficiency

Consider C1 := A \ 1 ∈ V and C2 := A t j ∈ V .
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We have

〈X ,A〉 =
x1 + · · ·+ xa√

a
,

〈X ,C1〉 =
x2 + · · ·+ xa√

a − 1
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≥ 2x1 + x2 + · · ·+ xa√
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.



Proof of sufficiency

〈X ,A〉 =
x1 + · · ·+ xa√

a
, 〈X ,C1〉 =

x2 + · · ·+ xa√
a − 1

,

〈X ,C2〉 ≥
2x1 + x2 + · · ·+ xa√

a + 1
.

Denote

f (α) :=
αx1 + x2 + · · ·+ xa√

a − 1 + α
=

= x1
√
a − 1 + α +

(x2 − x1) + · · ·+ (xa − x1)√
a − 1 + α

.

We have that

〈X ,A〉 = f (1), 〈X ,C1〉 = f (0), 〈X ,C2〉 ≥ f (2).



Proof of sufficiency, end

〈X ,A〉 = f (1), 〈X ,C1〉 = f (0), 〈X ,C2〉 ≥ f (2).

f (α) = x1
√
a − 1 + α +

(x2 − x1) + · · ·+ (xa − x1)√
a − 1 + α

.

From 0 ≤ x1 ≤ x2 · · · ≤ xa we have that f as a function of√
a − 1 + α is either

convex,

or linear non-constant,

or zero.

In the first two cases either 〈X ,C1〉 ≥ 〈X ,A〉 or 〈X ,C2〉 ≥ 〈X ,A〉. In
the last case, 〈X ,A〉 = 0 and there is a singleton C ∈ V such that
〈X ,C 〉 > 0.



Constructing a small set V

Partition the set {1, . . . , n} into several disjoint groups.

Let V be the set of subsets of {1, . . . , n}, whose intersection with
every group, except maybe one, contains not more than one element.

Clearly,

{i} ∈ V for all i ∈ {1, . . . , n}.
If A ∈ V and |A| > 1, then A \ i ∈ V for any i ∈ A.



Constructing a small set V

Let us check the last required property of V .
Case 1:

i

j
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A ⊔ j

B ⊔ i \ j



Constructing a small set V

Let us check the last required property of V .
Case 2:
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Size of V

We use k groups of size roughly s = n/k . For an element A ∈ V we
have

k choices of the maximal group of A,

at most 2s choices of which elements of the maximal group to
add to A,

at most s + 1 choices for each of the k − 1 elements of A in the
non-maximal groups.

In total we get
|V | < 2s(s + 1)k−1k .



Size of V

|V | < 2s(s + 1)k−1k .

Choosing k = s =
√
n we get

|V | < e(
1
2
+o(1))

√
nlog n.



Lower bound

Theorem (Arnoux, Marin)

Let P be a simplicial complex with a 1-cocycle ω such that ωn 6= 0.
Then P has at least (n+2)(n+1)

2
vertices.

Corollary

|RPn| ≥ (n+2)(n+1)
2

.



Proof of the lower bound

Suppose that the set of vertices of P is decomposed into two disjoint
sets. Denote by X and Y the subcomplexes induced by the sets.
We have that

X ∼ P \ Y ,
Y ∼ P \ X ,
P = (P \ X ) ∪ (P \ Y ).



Proof of the lower bound

P
X

Y

P \ Y

P \X

∼

∼



Proof of the lower bound, end

Complex P has a non-trivial n-cocycle ωn. So, there is at least one
n-simplex ∆n ⊂ P .

Take Y = ∆n. Then ω|P\X = ω|Y = 0.

Suppose that (ω|X )n−1 = (ω|P\Y )n−1 = 0. Then from
P = (P \ X ) ∪ (P \ Y ) we get that ω · ωn−1 = ωn = 0, contradiction.

So, (ω|X )n−1 6= 0. By induction, X has at least (n+1)n
2

vertices. So, P

has at least (n+1)n
2

+ (n + 1) = (n+2)(n+1)
2

vertices.



Facets lower bound

Theorem (Bárány, Lovász)

Any symmetric triangulation of Sn has at least 2n+1 facets.



Proof of the facets lower bound

Embed the given triangulated Sn into the unit sphere S |V /2|−1, where
V is the number of vertices in the triangulation.
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Proof of the facets lower bound, end

By the Borsuk–Ulam theorem, any central hyperplane of codimension
n intersects at least two facets.
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By the Crofton formula, the total n-dimensional volume of the
embedded Sn is at least the same as the volume of the unit n-sphere.

The n-volume of each facet is 1
2n+1 . So, the total number of facets is

at least 2n+1.


