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Sizes of manifold’s triangulations

Denote by |M| the minimum number of vertices in a triangulation of
a manifold M. For a family of manifolds M, it is interesting to know

the asymptotic behavior of |M,,|.

A trivial example
|S"| = n+2.

Best current bounds for other basic families
O(n*) < [(§1)"] < 2" —1,
O(n2) < |RP" < (",
o(r?) < [CP"| <7.



Inductive constructions of RP”"

A very simple inductive construction gives
IRP"| <3.2"1
Using Minkowski sum construction one can prove
IRPX"| < |RP"X.

There is also a very nice inductive construction by Venturello and
Zheng with

|RPn+2| S ‘RPnJrl‘ + |RP”|



For all positive integers n, there exists a triangulation of RP"~1 with
at most ez teMVilcen yertices.

So,
O(n2) < |RPn| < e(%-l—o(l))ﬁlogn'



RP" is a symmetric sphere of diameter at least 3

Consider the universal cover of RP". It is a triangulation of S" which
is

@ symmetric,

@ the closed stars of any two opposite vertices are disjoint,
equivalently

@ the distance (number of edges) between any two opposite
vertices is at least 3.

In the other direction, the quotient of any triangulation of S” with
the properties above is a triangulation of RP".












Our construction

@ Start with a crosspolytope with vertices {+1,4+2, ..., +tn}. The
facet {1,2,...,n} is called positive and {—1, -2 ..., —n} is
called negative.

@ Triangulate the positive facet with a certain triangulation T
adding additional vertices. Triangulate the negative facet
symmetrically.

@ Each side facet is a join o % (—7) of faces o and —7 belonging
to the positive and the negative facet, resp. Moreover ¢ and T
are such that c N7 = .

We have already triangulated both ¢ and —7, so triangulate
o * (—7) as their join without adding new vertices.
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Triangulation of a join

Suppose we are given triangulated simplices (or simplicial complexes
in general) o and 7.

The join o * 7 is the triangulated in the following way: for every pair
of simplices 0/ C o and 7/ C 7 the triangulation of ¢ * 7 contains a
simplex o’ * /.












What do we need from T7

Suppose that in our refining of the crosspolytope triangulation there
is a path x — y — —x between x and —x. Wlog both x and y are in
the positive facet. Then the edge y — —x is in a side facet o * (—7)
where o N7 = 0.

So, triangulation T of the positive facet is good if for any two faces
o, 7 with o N7 = () there is no edge between ¢ and 7.



What do we need from T7

Bad triangulation




What do we need from T7

Good triangulation




In the spherical simplex, for any 0 N7 = () any edge between o and 7
has length 90°.

So, T is good if all the edges are shorter than 90°.



The vertices of T will be some of the vertices of the barycentric
subdivision.
Vertices are identified with the subsets of {1,2,...,n} ...




The vertices of T will be some of the vertices of the barycentric
subdivision.
. and with unit vectors.




Construction of T

Take a certain subset V C 2/ - some of the vertices of the
barycentric subdivision. Take T to be the Delaunay triangulation on
V.
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Taking as V all the vertices and all the edges midpoints is not
enough. Consider the tetrahedron
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What do we need from V?

The edges of T are shorter than 90° if for any A, B € V such that
(A,B) =0 and any X € S"! there is C € V such that
(X,C) > (X,A) or (X,C) > (X, B).

We can assume that the coordinates of X are non-negative.



e {i}eVforallie{l,...,n}.
e If Ac V and |A| > 1, then A\ j € V for any i € A.
@ Forevery A, Bc V with ANB =1, thereare i € Aand j € B
such that either
o AUjeVand BUi\jeV,
or
e BUieVand AUj\ie V.
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Assume x; < x;. Then C:= B Ui\ j € Vis closer to X than B is.
So,

Xj = Xj 2> Xi.



Consider G :=A\1l€ Vand GG:=AUje V.

_ 1 1 1
A= 7 va w0 0 0
01=E| e 0 0 0
Oy = a1+1 al+1 al+1 0 0 al+1
X =z < <z; < < Ty Tat1 Tj—1 X
We have N N
Xl P X
(X, A) = —FF—,
Vva
X+ X
(X, G) = =——=—,
va—1
X1+ X)) +x+ -+ X 21+ X+ -+ X
<X,C2>:(1 J) 2 aZ 1 2 a.

va+1l va-+1



X1+"'+Xa X2+"'+Xa
XA =——""(X,G)= ——r——,
< 9 > \/5 < 1> \/a——l
23+ X+ -+ X,
X, G) > .
X G2 ==
Denote o) = ax1+X2+"'+Xa:
' va—-1+a«
(2 —x1) + -+ (xa — x1)
=xvVa-—-1 .
X1V a +a+ Ja_lta

We have that

(X, Ay =1(1), (X,G)="1(0), (X,G)=>f(2).



Proof of sufficiency, end

<X’A> = f(l)v <X, C1> = f(O)v <X7 C2> > f(2)

_ (o —x1)+ -+ (x5 — x1)
fla)=xxva—1+a+ i Tra :

From 0 < x; < x--- < x, we have that f as a function of

va—1+ « is either

@ convex,

@ or linear non-constant,
@ or zero.
In the first two cases either (X, G;) > (X, A) or (X, G) > (X, A). In

the last case, (X, A) = 0 and there is a singleton C € V such that
(X,C)>0.



Constructing a small set V

Partition the set {1,..., n} into several disjoint groups.

Let V be the set of subsets of {1,...,n}, whose intersection with
every group, except maybe one, contains not more than one element.

Clearly,
o {i}eVforallie{l, ... ,n}.
@ If Ac V and |A| > 1, then A\ i€ V forany i € A.



Let us check the last required property of V.

Case 1:
Ago o| | o |
B e (0o e o o | °
J
AUy oo o o | o |

BuUi\j * o o o of o | °



Let us check the last required property of V.
Case 2:

A oooo|ooz

ele o oo
B e |t i er | e e

ALy ceooccleeec|o @] e e
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Size of V

We use k groups of size roughly s = n/k. For an element A € V we
have

@ k choices of the maximal group of A,

@ at most 2° choices of which elements of the maximal group to
add to A,

@ at most s + 1 choices for each of the kK — 1 elements of A in the
non-maximal groups.

In total we get
V| < 2°(s + 1) k.



V| < 2%(s + 1) k.
Choosing k = s = v/n we get

V| < e(3+o(1))v/rnlogn.



Let P be a simplicial complex with a 1-cocycle w such that w" # 0.
Then P has at least w vertices.

IRP7| > (t2Untl) \




Suppose that the set of vertices of P is decomposed into two disjoint
sets. Denote by X and Y the subcomplexes induced by the sets.
We have that

X~P\Y,
Y ~ P\ X,
P=(P\X)U(P\Y).






Proof of the lower bound, end

Complex P has a non-trivial n-cocycle w”. So, there is at least one
n-simplex A" C P.

Take Y = A". Then w|p\x = w|y = 0.

Suppose that (w|x)"! = (w|p\y)" ' = 0. Then from
P=(P\X)U(P\Y) we get that w - w" ! = w" = 0, contradiction.

So, (w|x)™ ! # 0. By induction, X has at least @ vertices. So, P
has at least @ +(n+1)= w vertices.



Any symmetric triangulation of S" has at least 2" facets.




Proof of the facets lower bound

|V/2|-1

Embed the given triangulated S” into the unit sphere S , where

V' is the number of vertices in the triangulation.




Proof of the facets lower bound, end

By the Borsuk—Ulam theorem, any central hyperplane of codimension
n intersects at least two facets.

By the Crofton formula, the total n-dimensional volume of the
embedded S” is at least the same as the volume of the unit n-sphere.

The n-volume of each facet is 2% So, the total number of facets is
at least 2"+1.



