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e Packing problems: What kind of problems?

e Semidefinite programming bounds: Optimization in the service of
geometry.

° : Why do we want exact bounds?

Problem:

Usually semidefinite programming provides approximate numerical bounds.

How can we turn these bounds into exact bounds?
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Motivation: the kissing number problem

How many unit spheres can simultaneously touch a central unit sphere
without overlapping?

Known in dimensions 1, 2, 3 (Schutte, vander Waerden, 1953),

4 (Musin, 2008), 8 and 24 (Levenshtein / Odlyzko, Sloane, 1979).
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Formulation and generalizations

One-sided kissing number (Musin, 2006):

max{|C|, CcH"™! x.y<1/2forallx+#yec C}
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e [Dostert, De Laat, M., 2020]: A general framework to prove
optimality and uniqueness of such configurations. 5
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These are optimization problems!

Let G = (V, E) be the graph where:

o V=35"1(or H71),
o {x,y} € Eif x-y > cosf.

Our problems boil down to computing the independence number of these
graphs!

e Lower bounds: Constructions.
e Upper bounds:
e For finite graphs: hierarchies of semidefinite upper bounds.
(Lovasz-Schrijver 1991, Lasserre 2001, Laurent 2007)
e For infinite graphs: Generalization of Lasserre's hierarchy (de
Laat-Vallentin 2015), related to the previous 2-point

(Delsarte-Goethals-Seidel 1977) and 3-point bounds (Bachoc-Vallentin
2008).
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Based on two ingredients, related to the symmetries of the sphere:

e Up to symmetry, a couple x, y of points in a #-spherical code is

uniquely determined by

u=1 X=y

u=x-y, with
ue[-1,cos6] x#y

e The normalized Gegenbauer polynomials P](u) (with P7(1) = 1),
satisfying:

For every X C S" ! finite, Z Pl(x-y)>0.
x,yeX
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2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

e there exists coefficients ag, ..., @y > 0 such that

d
f(u) = onPi(u).
k=0

o f(u) < —1forall ue[-1,cosb]

Then, if C is a 6-spherical code,

d
0< Y (Y Pilxy))= > flxy) <ICIFL)+Y flxy) = [CI(F(1)—|C|+1)
k=0 x,yeC x,yeC XF£y
So
IC| < f(1) +1
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2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

So for every d > 0, the size of a #-spherical code is at most

min{M e R: ag,...,aq >0,
f(u) < —1 for all u € [-1,cosf]}

where ;
f(u) = arPf(u).
k=0

This is a linear programming bound.
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3-point bound for spherical codes (Bachoc-Vallentin 2008)

Based on two ingredients related to the symmetries of the sphere:

e Up to symmetry, a triple of points x, y, z in a f-spherical code is
uniquely determined by

u=x-y, v=x-z, t=y-z,

with (u, v, t) in

{(1,171)} X:y:z
Ao ={(v,u,1):ue[-1,cos0]} x#y=z
A X, y, z distinct

where
A= {(u,v,t):uv,t€[-1,cos6],1+2uvt — uv?—v?—t* >0}
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3-point bound for spherical codes (Bachoc-Vallentin 2008)

Based on two ingredients related to the symmetries of the sphere:

e Up to symmetry, a triple of points x, y, z in a f-spherical code is
uniquely determined by

u=x-y, v=x-z, t=y-z,

with (u, v, t) in

{(1,171)} X:y:z
Ao ={(v,u,1):ue[-1,cos0]} x#y=z
A X, y, z distinct

where
A= {(u,v,t):uv,t€[-1,cos6],1+2uvt — uv?—v?—t* >0}
e Matrix polynomials S](u, v, t) satisfying:

For every X C S"! finite, Z SP(x-y,x-z,y-t)=0.

X7y7Z€X 10



3-point bound for spherical codes (Bachoc-Vallentin 2008)

Then for every d > 0, the size of a §-spherical code is at most

min{fM e R: a) >0,Fx =0
d
Do+ F(LL) <M1,
k=0

d
ZakP,’J(u) +3F(u,u,1) < —1 for all u € [-1,cosb)],
k=0
F(u,v,t) <0 forall (u,v,t) € A}

where

d
F(u,v,t) = Z(Fk, Se(u, v, t)).

k=0
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3-point bound for spherical codes (Bachoc-Vallentin 2008)

Then for every d > 0, the size of a §-spherical code is at most

min{fM e R: a) >0,Fx =0
d
Do+ F(LL) <M1,
k=0

d
ZakP,’J(u) +3F(u,u,1) < —1 for all u € [-1,cosb)],
k=0

F(u,v,t) <0 forall (u,v,t) € A}
where

d
F(u,v,t) = Z(Fk, Se(u, v, t)).

k=0
This leads to semidefinite upper bounds using sums of squares.
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Why exact bounds?

Assume we know a configuration C with |C| = N.

e Any upper bound < N + 1 is enough to prove that C is optimal.

e Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to NV, it is not hard to prove a rigorous upper
bound of the form N + &.

So why do we want an exact sharp bound?

e Optimization: When does a bound give the independence number?

e Geometry: Sharp bounds provide additional information on optimal
configurations, leading to uniqueness proofs.

12
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e For spherical codes, including kissing number:

e 2-point bound — linear programming bound
e 3-point bound — semidefinite programming bound

e For spherical codes in spherical caps, like hemisphere:

e Delsarte bound does not apply anymore due to the lack of symmetry.
e The 3-point bound can be adapted to a 2-point semidefinite
programming bound (Bachoc-Vallentin 2009).

13
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Many examples of exact sharp LP bounds ...

But very few cases in which SDP bound is proven to be sharp while LP is
not:

e The Petersen code is the unique optimal 1/6-code in dimension 4
(Bachoc-Vallentin 2009, Dostert-de Laat-M 2020).

e Numerically sharp for the square antiprism (Bachoc-Vallentin 2009)
— Rigorous proof (Dostert-de Laat-M 2020)

e F£g gives an optimal configuration on the hemisphere in dimension 8
(Bachoc-Vallentin 2009)
— Uniqueness (Dostert-de Laat-M 2020)
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A semidefinite program:

H t 5
inf{ cx : , Bi(x) =0}
objective PSD constraints

with x the vector of unknowns, and B;(x) the blocks of x.

e Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El
Din 2018).

e For larger problems, SDP solvers provide approximate solutions in
floating point in polynomial time.

How can we turn an approximate solution into an exact one?

e Even if the SDP is defined over QQ, optimal solutions can require high
algebraic degree (Nie-Ranestad-Sturmfels 2008).
e Our context: The problems provide a candidate field to round over,

either Q or Q(\/d). 15
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Rounding over QQ: the affine conditions

Solve the SDP numerically in high precision (SDPA-GMP),
—> get an approximate solution x*:

o Ax* =~

e The blocks Bj(x*) might have negative near zero eigenvalues.

We want to find a solution x close to x* and such that

Ax = b.
e Put the system into reduced row echelon form in rational arithmetic,

e Solve the system by backsubstitution. For every free variable, take a

value close to the corresponding value in x*.

The linear system is then satisfied... But what about the PSD conditions?
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Rounding over Q: the PSD conditions

o If all the eigenvalues of B;(x*) are far away from zero, B;(x) will be

positive definite.

e |f the dimension of the affine space is larger than that of the feasible
set, we are in trouble. How to deal with near zero eigenvalues?

e Sometimes, zero eigenvalues can be forced by some additional affine
constraints coming from an optimal configuration.
This is sometimes enough... (Cohn-Woo 2012).

e Sometimes not. By undertsanding the kernels, we can force all these

constraints!
17
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Rounding over Q: the complete procedure

1. Compute an approximate solution x*.

N

Compute the kernels of the B;(x*)'s and detect the expected
kernels of the B;(x)'s using LLL.

Include the new linear constraints in the linear system Ax = b.
Row reduce the linear system.

Solve it with backsubstitution using x*.

o & = W

Check that the blocks of the rounded solution are indeed PSD.

Thank you!
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