
Exact semidefinite programming bounds

for packing problems

Philippe Moustrou, UiT - The Arctic University of Norway

Joint work with M. Dostert (KTH) and D. de Laat (TU Delft).

Combinatorics and Geometric Days III - December 4, 2020

Contents

Exact semidefinite programming bounds for packing problems

• Packing problems: What kind of problems?

• Semidefinite programming bounds: Optimization in the service of

geometry.

• Exact: Why do we want exact bounds?

Problem:

Usually semidefinite programming provides approximate numerical bounds.

How can we turn these bounds into exact bounds?

2

Contents

Exact semidefinite programming bounds for packing problems

• Packing problems: What kind of problems?

• Semidefinite programming bounds: Optimization in the service of

geometry.

• Exact: Why do we want exact bounds?

Problem:

Usually semidefinite programming provides approximate numerical bounds.

How can we turn these bounds into exact bounds?

2

Contents

Exact semidefinite programming bounds for packing problems

• Packing problems: What kind of problems?

• Semidefinite programming bounds: Optimization in the service of

geometry.

• Exact: Why do we want exact bounds?

Problem:

Usually semidefinite programming provides approximate numerical bounds.

How can we turn these bounds into exact bounds?

2

Contents

Exact semidefinite programming bounds for packing problems

• Packing problems: What kind of problems?

• Semidefinite programming bounds: Optimization in the service of

geometry.

• Exact: Why do we want exact bounds?

Problem:

Usually semidefinite programming provides approximate numerical bounds.

How can we turn these bounds into exact bounds?

2

Contents

Exact semidefinite programming bounds for packing problems

• Packing problems: What kind of problems?

• Semidefinite programming bounds: Optimization in the service of

geometry.

• Exact: Why do we want exact bounds?

Problem:

Usually semidefinite programming provides approximate numerical bounds.

How can we turn these bounds into exact bounds?

2

Contents

Exact semidefinite programming bounds for packing problems

• Packing problems: What kind of problems?

• Semidefinite programming bounds: Optimization in the service of

geometry.

• Exact: Why do we want exact bounds?

Problem:

Usually semidefinite programming provides approximate numerical bounds.

How can we turn these bounds into exact bounds?

2

Motivation: the kissing number problem

How many unit spheres can simultaneously touch a central unit sphere

without overlapping?

Known in dimensions 1, 2, 3 (Schutte, vander Waerden, 1953),

4 (Musin, 2008), 8 and 24 (Levenshtein / Odlyzko, Sloane, 1979).

3

Motivation: the kissing number problem

How many unit spheres can simultaneously touch a central unit sphere

without overlapping?

Known in dimensions 1, 2, 3 (Schutte, vander Waerden, 1953),

4 (Musin, 2008), 8 and 24 (Levenshtein / Odlyzko, Sloane, 1979).

3

Motivation: the kissing number problem

How many unit spheres can simultaneously touch a central unit sphere

without overlapping?

Known in dimensions 1, 2, 3 (Schutte, vander Waerden, 1953),

4 (Musin, 2008), 8 and 24 (Levenshtein / Odlyzko, Sloane, 1979).

3

Motivation: the kissing number problem

How many unit spheres can simultaneously touch a central unit sphere

without overlapping?

Known in dimensions 1, 2, 3 (Schutte, vander Waerden, 1953),

4 (Musin, 2008), 8 and 24 (Levenshtein / Odlyzko, Sloane, 1979).

3

Formulation and generalizations

π
3

Kissing number:

max{|C |, C ⊂ Sn−1, x · y ≤ 1/2 for all x 6= y ∈ C}

4

Formulation and generalizations

π
3

Spherical codes:

max{|C |, C ⊂ Sn−1, x · y ≤ cos θ for all x 6= y ∈ C}

4

Formulation and generalizations

π
3

One-sided kissing number (Musin, 2006):

max{|C |, C ⊂ Hn−1, x · y ≤ 1/2 for all x 6= y ∈ C}

4

Goal and results

We are interested in special rigid structures, like:

• The square antiprism, the unique optimal θ-spherical code in

dimension 3 with cos θ = (2
√

2− 1)/7 (Schütte-van der Waerden

1951, Danzer 1986).

c1

c8

c2

c5

c3

c4

c7

c6

• For the Hemisphere in dimension 8: the E8 lattice provides an optimal

configuration (Bachoc-Vallentin, 2008). What about uniqueness?
1

1

56

126

56

183

240

• [Dostert, De Laat, M., 2020]: A general framework to prove

optimality and uniqueness of such configurations.

5

Goal and results

We are interested in special rigid structures, like:
• The square antiprism, the unique optimal θ-spherical code in

dimension 3 with cos θ = (2
√

2− 1)/7 (Schütte-van der Waerden

1951, Danzer 1986).

c1

c8

c2

c5

c3

c4

c7

c6

• For the Hemisphere in dimension 8: the E8 lattice provides an optimal

configuration (Bachoc-Vallentin, 2008). What about uniqueness?
1

1

56

126

56

183

240

• [Dostert, De Laat, M., 2020]: A general framework to prove

optimality and uniqueness of such configurations.

5

Goal and results

We are interested in special rigid structures, like:
• The square antiprism, the unique optimal θ-spherical code in

dimension 3 with cos θ = (2
√

2− 1)/7 (Schütte-van der Waerden

1951, Danzer 1986).

c1

c8

c2

c5

c3

c4

c7

c6

• For the Hemisphere in dimension 8: the E8 lattice provides an optimal

configuration (Bachoc-Vallentin, 2008). What about uniqueness?
1

1

56

126

56

183

240

• [Dostert, De Laat, M., 2020]: A general framework to prove

optimality and uniqueness of such configurations.

5

Goal and results

We are interested in special rigid structures, like:
• The square antiprism, the unique optimal θ-spherical code in

dimension 3 with cos θ = (2
√

2− 1)/7 (Schütte-van der Waerden

1951, Danzer 1986).

c1

c8

c2

c5

c3

c4

c7

c6

• For the Hemisphere in dimension 8: the E8 lattice provides an optimal

configuration (Bachoc-Vallentin, 2008). What about uniqueness?
1

1

56

126

56

183

240

• [Dostert, De Laat, M., 2020]: A general framework to prove

optimality and uniqueness of such configurations. 5

These are optimization problems!

Let G = (V ,E) be the graph where:

• V = Sn−1 (or Hn−1),

• {x , y} ∈ E if x · y > cos θ.

Our problems boil down to computing the independence number of these

graphs!

• Lower bounds: Constructions.

• Upper bounds:

• For finite graphs: hierarchies of semidefinite upper bounds.

(Lovász-Schrijver 1991, Lasserre 2001, Laurent 2007)

• For infinite graphs: Generalization of Lasserre’s hierarchy (de

Laat-Vallentin 2015), related to the previous 2-point

(Delsarte-Goethals-Seidel 1977) and 3-point bounds (Bachoc-Vallentin

2008).

6

These are optimization problems!

Let G = (V ,E) be the graph where:

• V = Sn−1 (or Hn−1),

• {x , y} ∈ E if x · y > cos θ.

Our problems boil down to computing the independence number of these

graphs!

• Lower bounds: Constructions.

• Upper bounds:

• For finite graphs: hierarchies of semidefinite upper bounds.

(Lovász-Schrijver 1991, Lasserre 2001, Laurent 2007)

• For infinite graphs: Generalization of Lasserre’s hierarchy (de

Laat-Vallentin 2015), related to the previous 2-point

(Delsarte-Goethals-Seidel 1977) and 3-point bounds (Bachoc-Vallentin

2008).

6

These are optimization problems!

Let G = (V ,E) be the graph where:

• V = Sn−1 (or Hn−1),

• {x , y} ∈ E if x · y > cos θ.

Our problems boil down to computing the independence number of these

graphs!

• Lower bounds: Constructions.

• Upper bounds:

• For finite graphs: hierarchies of semidefinite upper bounds.

(Lovász-Schrijver 1991, Lasserre 2001, Laurent 2007)

• For infinite graphs: Generalization of Lasserre’s hierarchy (de

Laat-Vallentin 2015), related to the previous 2-point

(Delsarte-Goethals-Seidel 1977) and 3-point bounds (Bachoc-Vallentin

2008).

6

These are optimization problems!

Let G = (V ,E) be the graph where:

• V = Sn−1 (or Hn−1),

• {x , y} ∈ E if x · y > cos θ.

Our problems boil down to computing the independence number of these

graphs!

• Lower bounds: Constructions.

• Upper bounds:

• For finite graphs: hierarchies of semidefinite upper bounds.

(Lovász-Schrijver 1991, Lasserre 2001, Laurent 2007)

• For infinite graphs: Generalization of Lasserre’s hierarchy (de

Laat-Vallentin 2015), related to the previous 2-point

(Delsarte-Goethals-Seidel 1977) and 3-point bounds (Bachoc-Vallentin

2008).

6

These are optimization problems!

Let G = (V ,E) be the graph where:

• V = Sn−1 (or Hn−1),

• {x , y} ∈ E if x · y > cos θ.

Our problems boil down to computing the independence number of these

graphs!

• Lower bounds: Constructions.

• Upper bounds:

• For finite graphs: hierarchies of semidefinite upper bounds.

(Lovász-Schrijver 1991, Lasserre 2001, Laurent 2007)

• For infinite graphs: Generalization of Lasserre’s hierarchy (de

Laat-Vallentin 2015), related to the previous 2-point

(Delsarte-Goethals-Seidel 1977) and 3-point bounds (Bachoc-Vallentin

2008).

6

These are optimization problems!

Let G = (V ,E) be the graph where:

• V = Sn−1 (or Hn−1),

• {x , y} ∈ E if x · y > cos θ.

Our problems boil down to computing the independence number of these

graphs!

• Lower bounds: Constructions.

• Upper bounds:

• For finite graphs: hierarchies of semidefinite upper bounds.

(Lovász-Schrijver 1991, Lasserre 2001, Laurent 2007)

• For infinite graphs: Generalization of Lasserre’s hierarchy (de

Laat-Vallentin 2015), related to the previous 2-point

(Delsarte-Goethals-Seidel 1977) and 3-point bounds (Bachoc-Vallentin

2008).

6

These are optimization problems!

Let G = (V ,E) be the graph where:

• V = Sn−1 (or Hn−1),

• {x , y} ∈ E if x · y > cos θ.

Our problems boil down to computing the independence number of these

graphs!

• Lower bounds: Constructions.

• Upper bounds:

• For finite graphs: hierarchies of semidefinite upper bounds.

(Lovász-Schrijver 1991, Lasserre 2001, Laurent 2007)

• For infinite graphs: Generalization of Lasserre’s hierarchy (de

Laat-Vallentin 2015), related to the previous 2-point

(Delsarte-Goethals-Seidel 1977) and 3-point bounds (Bachoc-Vallentin

2008).

6

These are optimization problems!

Let G = (V ,E) be the graph where:

• V = Sn−1 (or Hn−1),

• {x , y} ∈ E if x · y > cos θ.

Our problems boil down to computing the independence number of these

graphs!

• Lower bounds: Constructions.

• Upper bounds:

• For finite graphs: hierarchies of semidefinite upper bounds.

(Lovász-Schrijver 1991, Lasserre 2001, Laurent 2007)

• For infinite graphs: Generalization of Lasserre’s hierarchy (de

Laat-Vallentin 2015), related to the previous 2-point

(Delsarte-Goethals-Seidel 1977) and 3-point bounds (Bachoc-Vallentin

2008).

6

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Based on two ingredients, related to the symmetries of the sphere:

• Up to symmetry, a couple x , y of points in a θ-spherical code is

uniquely determined by

u = x · y , with

u = 1 x = y

u ∈ [−1, cos θ] x 6= y

• The normalized Gegenbauer polynomials Pn
k (u) (with Pn

k (1) = 1),

satisfying:

For every X ⊂ Sn−1 finite,
∑

x ,y∈X
Pn
k (x · y) ≥ 0.

7

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Based on two ingredients, related to the symmetries of the sphere:

• Up to symmetry, a couple x , y of points in a θ-spherical code is

uniquely determined by

u = x · y , with

u = 1 x = y

u ∈ [−1, cos θ] x 6= y

• The normalized Gegenbauer polynomials Pn
k (u) (with Pn

k (1) = 1),

satisfying:

For every X ⊂ Sn−1 finite,
∑

x ,y∈X
Pn
k (x · y) ≥ 0.

7

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Based on two ingredients, related to the symmetries of the sphere:

• Up to symmetry, a couple x , y of points in a θ-spherical code is

uniquely determined by

u = x · y , with

u = 1 x = y

u ∈ [−1, cos θ] x 6= y

• The normalized Gegenbauer polynomials Pn
k (u) (with Pn

k (1) = 1),

satisfying:

For every X ⊂ Sn−1 finite,
∑

x ,y∈X
Pn
k (x · y) ≥ 0.

7

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

• there exists coefficients α0, . . . , αd ≥ 0 such that

f (u) =
d∑

k=0

αkP
n
k (u).

• f (u) ≤ −1 for all u ∈ [−1, cos θ]

Then, if C is a θ-spherical code,

0 ≤
d∑

k=0

αk(
∑

x,y∈C

Pn
k (x ·y)) =

∑
x,y∈C

f (x ·y) ≤ |C |f (1)+
∑
x 6=y

f (x ·y) = |C |(f (1)−|C |+1)

So

|C | ≤ f (1) + 1

8

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

• there exists coefficients α0, . . . , αd ≥ 0 such that

f (u) =
d∑

k=0

αkP
n
k (u).

• f (u) ≤ −1 for all u ∈ [−1, cos θ]

Then, if C is a θ-spherical code,

0 ≤
d∑

k=0

αk(
∑

x,y∈C

Pn
k (x ·y)) =

∑
x,y∈C

f (x ·y) ≤ |C |f (1)+
∑
x 6=y

f (x ·y) = |C |(f (1)−|C |+1)

So

|C | ≤ f (1) + 1

8

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

• there exists coefficients α0, . . . , αd ≥ 0 such that

f (u) =
d∑

k=0

αkP
n
k (u).

• f (u) ≤ −1 for all u ∈ [−1, cos θ]

Then, if C is a θ-spherical code,

0 ≤
d∑

k=0

αk(
∑

x,y∈C

Pn
k (x ·y)) =

∑
x,y∈C

f (x ·y)

≤ |C |f (1)+
∑
x 6=y

f (x ·y) = |C |(f (1)−|C |+1)

So

|C | ≤ f (1) + 1

8

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

• there exists coefficients α0, . . . , αd ≥ 0 such that

f (u) =
d∑

k=0

αkP
n
k (u).

• f (u) ≤ −1 for all u ∈ [−1, cos θ]

Then, if C is a θ-spherical code,

0 ≤

d∑
k=0

αk(
∑

x,y∈C

Pn
k (x ·y)) =

∑
x,y∈C

f (x ·y)

≤ |C |f (1)+
∑
x 6=y

f (x ·y) = |C |(f (1)−|C |+1)

So

|C | ≤ f (1) + 1

8

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

• there exists coefficients α0, . . . , αd ≥ 0 such that

f (u) =
d∑

k=0

αkP
n
k (u).

• f (u) ≤ −1 for all u ∈ [−1, cos θ]

Then, if C is a θ-spherical code,

0 ≤
d∑

k=0

αk(
∑

x,y∈C

Pn
k (x ·y)) =

∑
x,y∈C

f (x ·y)

≤ |C |f (1)+
∑
x 6=y

f (x ·y) = |C |(f (1)−|C |+1)

So

|C | ≤ f (1) + 1

8

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

• there exists coefficients α0, . . . , αd ≥ 0 such that

f (u) =
d∑

k=0

αkP
n
k (u).

• f (u) ≤ −1 for all u ∈ [−1, cos θ]

Then, if C is a θ-spherical code,

0 ≤
d∑

k=0

αk(
∑

x,y∈C

Pn
k (x ·y)) =

∑
x,y∈C

f (x ·y) ≤ |C |f (1)+
∑
x 6=y

f (x ·y)

= |C |(f (1)−|C |+1)

So

|C | ≤ f (1) + 1

8

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

• there exists coefficients α0, . . . , αd ≥ 0 such that

f (u) =
d∑

k=0

αkP
n
k (u).

• f (u) ≤ −1 for all u ∈ [−1, cos θ]

Then, if C is a θ-spherical code,

0 ≤
d∑

k=0

αk(
∑

x,y∈C

Pn
k (x ·y)) =

∑
x,y∈C

f (x ·y) ≤ |C |f (1)+
∑
x 6=y

f (x ·y) = |C |(f (1)−|C |+1)

So

|C | ≤ f (1) + 1

8

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

• there exists coefficients α0, . . . , αd ≥ 0 such that

f (u) =
d∑

k=0

αkP
n
k (u).

• f (u) ≤ −1 for all u ∈ [−1, cos θ]

Then, if C is a θ-spherical code,

0 ≤
d∑

k=0

αk(
∑

x,y∈C

Pn
k (x ·y)) =

∑
x,y∈C

f (x ·y) ≤ |C |f (1)+
∑
x 6=y

f (x ·y) = |C |(f (1)−|C |+1)

So

|C | ≤ f (1) + 1

8

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

So for every d ≥ 0, the size of a θ-spherical code is at most

min{M ∈ R : α0, . . . , αd ≥ 0,

f (1) ≤ M − 1,

f (u) ≤ −1 for all u ∈ [−1, cos θ]}

where

f (u) =
d∑

k=0

αkP
n
k (u).

This is a linear programming bound.

9

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

So for every d ≥ 0, the size of a θ-spherical code is at most

min{M ∈ R : α0, . . . , αd ≥ 0,

f (1) ≤ M − 1,

f (u) ≤ −1 for all u ∈ [−1, cos θ]}

where

f (u) =
d∑

k=0

αkP
n
k (u).

This is a linear programming bound.

9

3-point bound for spherical codes (Bachoc-Vallentin 2008)

Based on two ingredients related to the symmetries of the sphere:

• Up to symmetry, a triple of points x , y , z in a θ-spherical code is

uniquely determined by

u = x · y , v = x · z , t = y · z ,

with (u, v , t) in
{(1, 1, 1)} x = y = z

∆0 = {(u, u, 1) : u ∈ [−1, cos θ]} x 6= y = z

∆ x , y , z distinct

where

∆ = {(u, v , t) : u, v , t ∈ [−1, cos θ], 1 + 2uvt − u2 − v2 − t2 ≥ 0}

• Matrix polynomials Sn
k (u, v , t) satisfying:

For every X ⊂ Sn−1 finite,
∑

x ,y ,z∈X
Sn
k (x · y , x · z , y · t)�0.

10

3-point bound for spherical codes (Bachoc-Vallentin 2008)

Based on two ingredients related to the symmetries of the sphere:

• Up to symmetry, a triple of points x , y , z in a θ-spherical code is

uniquely determined by

u = x · y , v = x · z , t = y · z ,

with (u, v , t) in
{(1, 1, 1)} x = y = z

∆0 = {(u, u, 1) : u ∈ [−1, cos θ]} x 6= y = z

∆ x , y , z distinct

where

∆ = {(u, v , t) : u, v , t ∈ [−1, cos θ], 1 + 2uvt − u2 − v2 − t2 ≥ 0}

• Matrix polynomials Sn
k (u, v , t) satisfying:

For every X ⊂ Sn−1 finite,
∑

x ,y ,z∈X
Sn
k (x · y , x · z , y · t)�0.

10

3-point bound for spherical codes (Bachoc-Vallentin 2008)

Based on two ingredients related to the symmetries of the sphere:

• Up to symmetry, a triple of points x , y , z in a θ-spherical code is

uniquely determined by

u = x · y , v = x · z , t = y · z ,

with (u, v , t) in
{(1, 1, 1)} x = y = z

∆0 = {(u, u, 1) : u ∈ [−1, cos θ]} x 6= y = z

∆ x , y , z distinct

where

∆ = {(u, v , t) : u, v , t ∈ [−1, cos θ], 1 + 2uvt − u2 − v2 − t2 ≥ 0}

• Matrix polynomials Sn
k (u, v , t) satisfying:

For every X ⊂ Sn−1 finite,
∑

x ,y ,z∈X
Sn
k (x · y , x · z , y · t)�0.

10

3-point bound for spherical codes (Bachoc-Vallentin 2008)

Then for every d ≥ 0, the size of a θ-spherical code is at most

min{M ∈ R : αk ≥ 0,Fk � 0

d∑
k=0

αk + F (1, 1, 1) ≤ M − 1,

d∑
k=0

αkP
n
k (u) + 3F (u, u, 1) ≤ −1 for all u ∈ [−1, cos θ],

F (u, v , t) ≤ 0 for all (u, v , t) ∈ ∆}

where

F (u, v , t) =
d∑

k=0

〈Fk ,Sn
k (u, v , t)〉.

This leads to semidefinite upper bounds using sums of squares.

11

3-point bound for spherical codes (Bachoc-Vallentin 2008)

Then for every d ≥ 0, the size of a θ-spherical code is at most

min{M ∈ R : αk ≥ 0,Fk � 0

d∑
k=0

αk + F (1, 1, 1) ≤ M − 1,

d∑
k=0

αkP
n
k (u) + 3F (u, u, 1) ≤ −1 for all u ∈ [−1, cos θ],

F (u, v , t) ≤ 0 for all (u, v , t) ∈ ∆}

where

F (u, v , t) =
d∑

k=0

〈Fk ,Sn
k (u, v , t)〉.

This leads to semidefinite upper bounds using sums of squares.

11

Why exact bounds?

Assume we know a configuration C with |C | = N.

• Any upper bound < N + 1 is enough to prove that C is optimal.

• Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to N, it is not hard to prove a rigorous upper

bound of the form N + ε.

So why do we want an exact sharp bound?

• Optimization: When does a bound give the independence number?

• Geometry: Sharp bounds provide additional information on optimal

configurations, leading to uniqueness proofs.

12

Why exact bounds?

Assume we know a configuration C with |C | = N.

• Any upper bound < N + 1 is enough to prove that C is optimal.

• Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to N, it is not hard to prove a rigorous upper

bound of the form N + ε.

So why do we want an exact sharp bound?

• Optimization: When does a bound give the independence number?

• Geometry: Sharp bounds provide additional information on optimal

configurations, leading to uniqueness proofs.

12

Why exact bounds?

Assume we know a configuration C with |C | = N.

• Any upper bound < N + 1 is enough to prove that C is optimal.

• Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to N, it is not hard to prove a rigorous upper

bound of the form N + ε.

So why do we want an exact sharp bound?

• Optimization: When does a bound give the independence number?

• Geometry: Sharp bounds provide additional information on optimal

configurations, leading to uniqueness proofs.

12

Why exact bounds?

Assume we know a configuration C with |C | = N.

• Any upper bound < N + 1 is enough to prove that C is optimal.

• Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to N, it is not hard to prove a rigorous upper

bound of the form N + ε.

So why do we want an exact sharp bound?

• Optimization: When does a bound give the independence number?

• Geometry: Sharp bounds provide additional information on optimal

configurations, leading to uniqueness proofs.

12

Why exact bounds?

Assume we know a configuration C with |C | = N.

• Any upper bound < N + 1 is enough to prove that C is optimal.

• Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to N, it is not hard to prove a rigorous upper

bound of the form N + ε.

So why do we want an exact sharp bound?

• Optimization: When does a bound give the independence number?

• Geometry: Sharp bounds provide additional information on optimal

configurations, leading to uniqueness proofs.

12

Why exact bounds?

Assume we know a configuration C with |C | = N.

• Any upper bound < N + 1 is enough to prove that C is optimal.

• Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to N, it is not hard to prove a rigorous upper

bound of the form N + ε.

So why do we want an exact sharp bound?

• Optimization: When does a bound give the independence number?

• Geometry: Sharp bounds provide additional information on optimal

configurations, leading to uniqueness proofs.

12

Recap

• For spherical codes, including kissing number:

• 2-point bound → linear programming bound

• 3-point bound → semidefinite programming bound

• For spherical codes in spherical caps, like hemisphere:

• Delsarte bound does not apply anymore due to the lack of symmetry.

• The 3-point bound can be adapted to a 2-point semidefinite

programming bound (Bachoc-Vallentin 2009).

13

Recap

• For spherical codes, including kissing number:

• 2-point bound → linear programming bound

• 3-point bound → semidefinite programming bound

• For spherical codes in spherical caps, like hemisphere:

• Delsarte bound does not apply anymore due to the lack of symmetry.

• The 3-point bound can be adapted to a 2-point semidefinite

programming bound (Bachoc-Vallentin 2009).

13

Results

Many examples of exact sharp LP bounds ...

But very few cases in which SDP bound is proven to be sharp while LP is

not:

• The Petersen code is the unique optimal 1/6-code in dimension 4

(Bachoc-Vallentin 2009, Dostert-de Laat-M 2020).

• Numerically sharp for the square antiprism (Bachoc-Vallentin 2009)

→ Rigorous proof (Dostert-de Laat-M 2020)

• E8 gives an optimal configuration on the hemisphere in dimension 8

(Bachoc-Vallentin 2009)

→ Uniqueness (Dostert-de Laat-M 2020)

14

Results

Many examples of exact sharp LP bounds ...

But very few cases in which SDP bound is proven to be sharp while LP is

not:

• The Petersen code is the unique optimal 1/6-code in dimension 4

(Bachoc-Vallentin 2009, Dostert-de Laat-M 2020).

• Numerically sharp for the square antiprism (Bachoc-Vallentin 2009)

→ Rigorous proof (Dostert-de Laat-M 2020)

• E8 gives an optimal configuration on the hemisphere in dimension 8

(Bachoc-Vallentin 2009)

→ Uniqueness (Dostert-de Laat-M 2020)

14

Results

Many examples of exact sharp LP bounds ...

But very few cases in which SDP bound is proven to be sharp while LP is

not:

• The Petersen code is the unique optimal 1/6-code in dimension 4

(Bachoc-Vallentin 2009, Dostert-de Laat-M 2020).

• Numerically sharp for the square antiprism (Bachoc-Vallentin 2009)

→ Rigorous proof (Dostert-de Laat-M 2020)

• E8 gives an optimal configuration on the hemisphere in dimension 8

(Bachoc-Vallentin 2009)

→ Uniqueness (Dostert-de Laat-M 2020)

14

Results

Many examples of exact sharp LP bounds ...

But very few cases in which SDP bound is proven to be sharp while LP is

not:

• The Petersen code is the unique optimal 1/6-code in dimension 4

(Bachoc-Vallentin 2009, Dostert-de Laat-M 2020).

• Numerically sharp for the square antiprism (Bachoc-Vallentin 2009)

→ Rigorous proof (Dostert-de Laat-M 2020)

• E8 gives an optimal configuration on the hemisphere in dimension 8

(Bachoc-Vallentin 2009)

→ Uniqueness (Dostert-de Laat-M 2020)

14

Results

Many examples of exact sharp LP bounds ...

But very few cases in which SDP bound is proven to be sharp while LP is

not:

• The Petersen code is the unique optimal 1/6-code in dimension 4

(Bachoc-Vallentin 2009, Dostert-de Laat-M 2020).

• Numerically sharp for the square antiprism (Bachoc-Vallentin 2009)

→ Rigorous proof (Dostert-de Laat-M 2020)

• E8 gives an optimal configuration on the hemisphere in dimension 8

(Bachoc-Vallentin 2009)

→ Uniqueness (Dostert-de Laat-M 2020)

14

Solving an SDP: Rage against the machine precision

A semidefinite program:

inf{ ctx︸︷︷︸
objective

: Ax = b︸ ︷︷ ︸
linear constraints

, Bi (x) � 0︸ ︷︷ ︸
PSD constraints

}

with x the vector of unknowns, and Bi (x) the blocks of x .

• Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El

Din 2018).

• For larger problems, SDP solvers provide approximate solutions in

floating point in polynomial time.

How can we turn an approximate solution into an exact one?

• Even if the SDP is defined over Q, optimal solutions can require high

algebraic degree (Nie-Ranestad-Sturmfels 2008).

• Our context: The problems provide a candidate field to round over,

either Q or Q(
√
d).

15

Solving an SDP: Rage against the machine precision

A semidefinite program:

inf{ ctx︸︷︷︸
objective

: Ax = b︸ ︷︷ ︸
linear constraints

, Bi (x) � 0︸ ︷︷ ︸
PSD constraints

}

with x the vector of unknowns, and Bi (x) the blocks of x .

• Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El

Din 2018).

• For larger problems, SDP solvers provide approximate solutions in

floating point in polynomial time.

How can we turn an approximate solution into an exact one?

• Even if the SDP is defined over Q, optimal solutions can require high

algebraic degree (Nie-Ranestad-Sturmfels 2008).

• Our context: The problems provide a candidate field to round over,

either Q or Q(
√
d).

15

Solving an SDP: Rage against the machine precision

A semidefinite program:

inf{ ctx︸︷︷︸
objective

: Ax = b︸ ︷︷ ︸
linear constraints

, Bi (x) � 0︸ ︷︷ ︸
PSD constraints

}

with x the vector of unknowns, and Bi (x) the blocks of x .

• Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El

Din 2018).

• For larger problems, SDP solvers provide approximate solutions in

floating point in polynomial time.

How can we turn an approximate solution into an exact one?

• Even if the SDP is defined over Q, optimal solutions can require high

algebraic degree (Nie-Ranestad-Sturmfels 2008).

• Our context: The problems provide a candidate field to round over,

either Q or Q(
√
d).

15

Solving an SDP: Rage against the machine precision

A semidefinite program:

inf{ ctx︸︷︷︸
objective

: Ax = b︸ ︷︷ ︸
linear constraints

, Bi (x) � 0︸ ︷︷ ︸
PSD constraints

}

with x the vector of unknowns, and Bi (x) the blocks of x .

• Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El

Din 2018).

• For larger problems, SDP solvers provide approximate solutions in

floating point in polynomial time.

How can we turn an approximate solution into an exact one?

• Even if the SDP is defined over Q, optimal solutions can require high

algebraic degree (Nie-Ranestad-Sturmfels 2008).

• Our context: The problems provide a candidate field to round over,

either Q or Q(
√
d).

15

Solving an SDP: Rage against the machine precision

A semidefinite program:

inf{ ctx︸︷︷︸
objective

: Ax = b︸ ︷︷ ︸
linear constraints

, Bi (x) � 0︸ ︷︷ ︸
PSD constraints

}

with x the vector of unknowns, and Bi (x) the blocks of x .

• Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El

Din 2018).

• For larger problems, SDP solvers provide approximate solutions in

floating point in polynomial time.

How can we turn an approximate solution into an exact one?

• Even if the SDP is defined over Q, optimal solutions can require high

algebraic degree (Nie-Ranestad-Sturmfels 2008).

• Our context: The problems provide a candidate field to round over,

either Q or Q(
√
d).

15

Solving an SDP: Rage against the machine precision

A semidefinite program:

inf{ ctx︸︷︷︸
objective

: Ax = b︸ ︷︷ ︸
linear constraints

, Bi (x) � 0︸ ︷︷ ︸
PSD constraints

}

with x the vector of unknowns, and Bi (x) the blocks of x .

• Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El

Din 2018).

• For larger problems, SDP solvers provide approximate solutions in

floating point in polynomial time.

How can we turn an approximate solution into an exact one?

• Even if the SDP is defined over Q, optimal solutions can require high

algebraic degree (Nie-Ranestad-Sturmfels 2008).

• Our context: The problems provide a candidate field to round over,

either Q or Q(
√
d).

15

Solving an SDP: Rage against the machine precision

A semidefinite program:

inf{ ctx︸︷︷︸
objective

: Ax = b︸ ︷︷ ︸
linear constraints

, Bi (x) � 0︸ ︷︷ ︸
PSD constraints

}

with x the vector of unknowns, and Bi (x) the blocks of x .

• Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El

Din 2018).

• For larger problems, SDP solvers provide approximate solutions in

floating point in polynomial time.

How can we turn an approximate solution into an exact one?

• Even if the SDP is defined over Q, optimal solutions can require high

algebraic degree (Nie-Ranestad-Sturmfels 2008).

• Our context: The problems provide a candidate field to round over,

either Q or Q(
√
d). 15

Rounding over Q: the affine conditions

Solve the SDP numerically in high precision (SDPA-GMP),

→ get an approximate solution x∗:

• Ax∗ ≈ b

• The blocks Bi (x∗) might have negative near zero eigenvalues.

We want to find a solution x close to x∗ and such that

Ax = b.

• Put the system into reduced row echelon form in rational arithmetic,

• Solve the system by backsubstitution. For every free variable, take a

value close to the corresponding value in x∗.

The linear system is then satisfied... But what about the PSD conditions?

16

Rounding over Q: the affine conditions

Solve the SDP numerically in high precision (SDPA-GMP),

→ get an approximate solution x∗:

• Ax∗ ≈ b

• The blocks Bi (x∗) might have negative near zero eigenvalues.

We want to find a solution x close to x∗ and such that

Ax = b.

• Put the system into reduced row echelon form in rational arithmetic,

• Solve the system by backsubstitution. For every free variable, take a

value close to the corresponding value in x∗.

The linear system is then satisfied... But what about the PSD conditions?

16

Rounding over Q: the affine conditions

Solve the SDP numerically in high precision (SDPA-GMP),

→ get an approximate solution x∗:

• Ax∗ ≈ b

• The blocks Bi (x∗) might have negative near zero eigenvalues.

We want to find a solution x close to x∗ and such that

Ax = b.

• Put the system into reduced row echelon form in rational arithmetic,

• Solve the system by backsubstitution. For every free variable, take a

value close to the corresponding value in x∗.

The linear system is then satisfied... But what about the PSD conditions?

16

Rounding over Q: the affine conditions

Solve the SDP numerically in high precision (SDPA-GMP),

→ get an approximate solution x∗:

• Ax∗ ≈ b

• The blocks Bi (x∗) might have negative near zero eigenvalues.

We want to find a solution x close to x∗ and such that

Ax = b.

• Put the system into reduced row echelon form in rational arithmetic,

• Solve the system by backsubstitution. For every free variable, take a

value close to the corresponding value in x∗.

The linear system is then satisfied... But what about the PSD conditions?

16

Rounding over Q: the affine conditions

Solve the SDP numerically in high precision (SDPA-GMP),

→ get an approximate solution x∗:

• Ax∗ ≈ b

• The blocks Bi (x∗) might have negative near zero eigenvalues.

We want to find a solution x close to x∗ and such that

Ax = b.

• Put the system into reduced row echelon form in rational arithmetic,

• Solve the system by backsubstitution. For every free variable, take a

value close to the corresponding value in x∗.

The linear system is then satisfied... But what about the PSD conditions?

16

Rounding over Q: the affine conditions

Solve the SDP numerically in high precision (SDPA-GMP),

→ get an approximate solution x∗:

• Ax∗ ≈ b

• The blocks Bi (x∗) might have negative near zero eigenvalues.

We want to find a solution x close to x∗ and such that

Ax = b.

• Put the system into reduced row echelon form in rational arithmetic,

• Solve the system by backsubstitution. For every free variable, take a

value close to the corresponding value in x∗.

The linear system is then satisfied... But what about the PSD conditions?

16

Rounding over Q: the affine conditions

Solve the SDP numerically in high precision (SDPA-GMP),

→ get an approximate solution x∗:

• Ax∗ ≈ b

• The blocks Bi (x∗) might have negative near zero eigenvalues.

We want to find a solution x close to x∗ and such that

Ax = b.

• Put the system into reduced row echelon form in rational arithmetic,

• Solve the system by backsubstitution. For every free variable, take a

value close to the corresponding value in x∗.

The linear system is then satisfied... But what about the PSD conditions?

16

Rounding over Q: the PSD conditions

• If all the eigenvalues of Bi (x∗) are far away from zero, Bi (x) will be

positive definite.

• If the dimension of the affine space is larger than that of the feasible

set, we are in trouble. How to deal with near zero eigenvalues?

• Sometimes, zero eigenvalues can be forced by some additional affine

constraints coming from an optimal configuration.

This is sometimes enough... (Cohn-Woo 2012).

• Sometimes not. By undertsanding the kernels, we can force all these

constraints!

17

Rounding over Q: the PSD conditions

• If all the eigenvalues of Bi (x∗) are far away from zero, Bi (x) will be

positive definite.

• If the dimension of the affine space is larger than that of the feasible

set, we are in trouble. How to deal with near zero eigenvalues?

• Sometimes, zero eigenvalues can be forced by some additional affine

constraints coming from an optimal configuration.

This is sometimes enough... (Cohn-Woo 2012).

• Sometimes not. By undertsanding the kernels, we can force all these

constraints!

17

Rounding over Q: the PSD conditions

• If all the eigenvalues of Bi (x∗) are far away from zero, Bi (x) will be

positive definite.

• If the dimension of the affine space is larger than that of the feasible

set, we are in trouble. How to deal with near zero eigenvalues?

• Sometimes, zero eigenvalues can be forced by some additional affine

constraints coming from an optimal configuration.

This is sometimes enough... (Cohn-Woo 2012).

• Sometimes not. By undertsanding the kernels, we can force all these

constraints!

17

Rounding over Q: the PSD conditions

• If all the eigenvalues of Bi (x∗) are far away from zero, Bi (x) will be

positive definite.

• If the dimension of the affine space is larger than that of the feasible

set, we are in trouble. How to deal with near zero eigenvalues?

• Sometimes, zero eigenvalues can be forced by some additional affine

constraints coming from an optimal configuration.

This is sometimes enough... (Cohn-Woo 2012).

• Sometimes not. By undertsanding the kernels, we can force all these

constraints!

17

Rounding over Q: the PSD conditions

• If all the eigenvalues of Bi (x∗) are far away from zero, Bi (x) will be

positive definite.

• If the dimension of the affine space is larger than that of the feasible

set, we are in trouble. How to deal with near zero eigenvalues?

• Sometimes, zero eigenvalues can be forced by some additional affine

constraints coming from an optimal configuration.

This is sometimes enough... (Cohn-Woo 2012).

• Sometimes not. By undertsanding the kernels, we can force all these

constraints!
17

Rounding over Q: the complete procedure

1. Compute an approximate solution x∗.

18

Rounding over Q: the complete procedure

1. Compute an approximate solution x∗.

2. Compute the kernels of the Bi (x∗)’s and detect the expected

kernels of the Bi (x)’s using LLL.

18

Rounding over Q: the complete procedure

1. Compute an approximate solution x∗.

2. Compute the kernels of the Bi (x∗)’s and detect the expected

kernels of the Bi (x)’s using LLL.

3. Include the new linear constraints in the linear system Ax = b.

18

Rounding over Q: the complete procedure

1. Compute an approximate solution x∗.

2. Compute the kernels of the Bi (x∗)’s and detect the expected

kernels of the Bi (x)’s using LLL.

3. Include the new linear constraints in the linear system Ax = b.

4. Row reduce the linear system.

18

Rounding over Q: the complete procedure

1. Compute an approximate solution x∗.

2. Compute the kernels of the Bi (x∗)’s and detect the expected

kernels of the Bi (x)’s using LLL.

3. Include the new linear constraints in the linear system Ax = b.

4. Row reduce the linear system.

5. Solve it with backsubstitution using x∗.

18

Rounding over Q: the complete procedure

1. Compute an approximate solution x∗.

2. Compute the kernels of the Bi (x∗)’s and detect the expected

kernels of the Bi (x)’s using LLL.

3. Include the new linear constraints in the linear system Ax = b.

4. Row reduce the linear system.

5. Solve it with backsubstitution using x∗.

6. Check that the blocks of the rounded solution are indeed PSD.

18

Rounding over Q: the complete procedure

1. Compute an approximate solution x∗.

2. Compute the kernels of the Bi (x∗)’s and detect the expected

kernels of the Bi (x)’s using LLL.

3. Include the new linear constraints in the linear system Ax = b.

4. Row reduce the linear system.

5. Solve it with backsubstitution using x∗.

6. Check that the blocks of the rounded solution are indeed PSD.

Thank you!

18

