Exact semidefinite programming bounds
for packing problems

Philippe Moustrou, UiT - The Arctic University of Norway
Joint work with M. Dostert (KTH) and D. de Laat (TU Delft).

Combinatorics and Geometric Days Il - December 4, 2020

semidefinite programming bounds for packing problems

semidefinite programming bounds for packing problems

e Packing problems: What kind of problems?

semidefinite programming bounds for packing problems

e Packing problems: What kind of problems?

e Semidefinite programming bounds: Optimization in the service of
geometry.

semidefinite programming bounds for packing problems

e Packing problems: What kind of problems?

e Semidefinite programming bounds: Optimization in the service of
geometry.

° : Why do we want exact bounds?

semidefinite programming bounds for packing problems

e Packing problems: What kind of problems?

e Semidefinite programming bounds: Optimization in the service of
geometry.

° : Why do we want exact bounds?

Problem:

Usually semidefinite programming provides approximate numerical bounds.

semidefinite programming bounds for packing problems

e Packing problems: What kind of problems?

e Semidefinite programming bounds: Optimization in the service of
geometry.

° : Why do we want exact bounds?

Problem:

Usually semidefinite programming provides approximate numerical bounds.

How can we turn these bounds into exact bounds?

Motivation: the kissing number problem

How many unit spheres can simultaneously touch a central unit sphere
without overlapping?

Motivation: the kissing number problem

How many unit spheres can simultaneously touch a central unit sphere
without overlapping?

Motivation: the kissing number problem

How many unit spheres can simultaneously touch a central unit sphere
without overlapping?

Motivation: the kissing number problem

How many unit spheres can simultaneously touch a central unit sphere
without overlapping?

Known in dimensions 1, 2, 3 (Schutte, vander Waerden, 1953),

4 (Musin, 2008), 8 and 24 (Levenshtein / Odlyzko, Sloane, 1979).

Formulation and generalizations

Kissing number:

max{|C|, CcS" ! x.y<1/2forallx+#yec C}

Formulation and generalizations

Spherical codes:

max{|C|, CcS™! x.y<coshforall x#yc C}

Formulation and generalizations

One-sided kissing number (Musin, 2006):

max{|C|, CcH"™! x.y<1/2forallx+#yec C}

Goal and results

We are interested in special rigid structures, like:

Goal and results

We are interested in special rigid structures, like:
e The square antiprism, the unique optimal f-spherical code in

dimension 3 with cos @ = (2v/2 — 1)/7 (Schiitte-van der Waerden
1951, Danzer 1986). 3

Goal and results

We are interested in special rigid structures, like:
e The square antiprism, the unique optimal f-spherical code in

dimension 3 with cosf = (2v/2 — 1)/7 (Schiitte-van der Waerden
1951, Danzer 1986).

e For the Hemisphere in dimension 8: the Eg lattice provides an optimal
configuration (Bachoc-Vallentin, 2008). What about uniqueness?

240

Goal and results

We are interested in special rigid structures, like:
e The square antiprism, the unique optimal f-spherical code in

dimension 3 with cosf = (2v/2 — 1)/7 (Schiitte-van der Waerden
1951, Danzer 1986).

e For the Hemisphere in dimension 8: the Eg lattice provides an optimal
configuration (Bachoc-Vallentin, 2008). What about uniqueness?

240

e [Dostert, De Laat, M., 2020]: A general framework to prove
optimality and uniqueness of such configurations. 5

These are optimization problems!

Let G = (V, E) be the graph where:

These are optimization problems!

Let G = (V, E) be the graph where:
o V=35"1(or H71),

These are optimization problems!

Let G = (V, E) be the graph where:

o V=35"1(or H71),
o {x,y} € Eif x-y > cosf.

These are optimization problems!

Let G = (V, E) be the graph where:

o V=35"1(or H71),
o {x,y} € Eif x-y > cosf.

Our problems boil down to computing the independence number of these
graphs!

These are optimization problems!

Let G = (V, E) be the graph where:

o V=35"1(or H71),
o {x,y} € Eif x-y > cosf.

Our problems boil down to computing the independence number of these
graphs!

e |ower bounds: Constructions.

These are optimization problems!

Let G = (V, E) be the graph where:

o V=35"1(or H71),
o {x,y} € Eif x-y > cosf.

Our problems boil down to computing the independence number of these
graphs!

e |ower bounds: Constructions.
e Upper bounds:

These are optimization problems!

Let G = (V, E) be the graph where:

o V=35"1(or H71),
o {x,y} € Eif x-y > cosf.

Our problems boil down to computing the independence number of these
graphs!

e Lower bounds: Constructions.
e Upper bounds:
e For finite graphs: hierarchies of semidefinite upper bounds.
(Lovasz-Schrijver 1991, Lasserre 2001, Laurent 2007)

These are optimization problems!

Let G = (V, E) be the graph where:

o V=35"1(or H71),
o {x,y} € Eif x-y > cosf.

Our problems boil down to computing the independence number of these
graphs!

e Lower bounds: Constructions.
e Upper bounds:
e For finite graphs: hierarchies of semidefinite upper bounds.
(Lovasz-Schrijver 1991, Lasserre 2001, Laurent 2007)
e For infinite graphs: Generalization of Lasserre's hierarchy (de
Laat-Vallentin 2015), related to the previous 2-point

(Delsarte-Goethals-Seidel 1977) and 3-point bounds (Bachoc-Vallentin
2008).

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Based on two ingredients, related to the symmetries of the sphere:

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Based on two ingredients, related to the symmetries of the sphere:

e Up to symmetry, a couple x, y of points in a #-spherical code is
uniquely determined by

u=1 X=y

u=x-y, with
ue[-1,cos6] x#y

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Based on two ingredients, related to the symmetries of the sphere:

e Up to symmetry, a couple x, y of points in a #-spherical code is

uniquely determined by

u=1 X=y

u=x-y, with
ue[-1,cos6] x#y

e The normalized Gegenbauer polynomials P](u) (with P7(1) = 1),
satisfying:

For every X C S" ! finite, Z Pl(x-y)>0.
x,yeX

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

e there exists coefficients ag, ..., @y > 0 such that

d
f(u) = onPi(u).
k=0

o f(u) < —1forall ue[-1,cosb]

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

e there exists coefficients ag, ..., @y > 0 such that

d
f(u) = onPi(u).
k=0

o f(u) < —1forall ue[-1,cosb]

Then, if C is a 6-spherical code,

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

e there exists coefficients ag, ..., @y > 0 such that

d
f(u) = onPi(u).
k=0

o f(u) < —1forall ue[-1,cosb]

Then, if C is a 6-spherical code,

> flxy)

x,yeC

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

e there exists coefficients ag, ..., @y > 0 such that

d
f(u) = onPi(u).
k=0

o f(u) < —1forall ue[-1,cosb]

Then, if C is a 6-spherical code,

d

Yoa(D] Pilxey)) = D flxy)

k=0 x,yeC x,yeC

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

e there exists coefficients ag, ..., @y > 0 such that

d
f(u) = onPi(u).
k=0

o f(u) < —1forall ue[-1,cosb]

Then, if C is a 6-spherical code,

d

0< > a(Y Pilxy))= D flxy)

k=0 x,yeC x,yeC

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

e there exists coefficients ag, ..., @y > 0 such that

d
f(u) = onPi(u).
k=0

o f(u) < —1forall ue[-1,cosb]

Then, if C is a 6-spherical code,

d

0< Y (Y Pilxy))= D flxy) < ICIF(L)+)_ F(xy)

k=0 x,yeC x,yeC XF£y

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

e there exists coefficients ag, ..., @y > 0 such that

d
f(u) = onPi(u).
k=0

o f(u) < —1forall ue[-1,cosb]

Then, if C is a 6-spherical code,

d

0< D aw(Y Pilxy)) = Y flxy) <ICIFL)+Y flxy) = [CI(F(1)—|C|+1)

k=0 x,yeC x,yeC XF£y

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

Assume we have a polynomial f such that

e there exists coefficients ag, ..., @y > 0 such that

d
f(u) = onPi(u).
k=0

o f(u) < —1forall ue[-1,cosb]

Then, if C is a 6-spherical code,

d
0< Y (Y Pilxy))= > flxy) <ICIFL)+Y flxy) = [CI(F(1)—|C|+1)
k=0 x,yeC x,yeC XF£y
So
IC| < f(1) +1

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

So for every d > 0, the size of a #-spherical code is at most

min{M e R: ag,...,aq >0,
f(u) < —1 for all u € [-1,cosf]}

where

d
f(u) = arPf(u).
k=0

2-point bound for spherical codes (Delsarte-Goethals-Seidel 1977)

So for every d > 0, the size of a #-spherical code is at most

min{M e R: ag,...,aq >0,
f(u) < —1 for all u € [-1,cosf]}

where ;
f(u) = arPf(u).
k=0

This is a linear programming bound.

3-point bound for spherical codes (Bachoc-Vallentin 2008)

Based on two ingredients related to the symmetries of the sphere:

10

3-point bound for spherical codes (Bachoc-Vallentin 2008)

Based on two ingredients related to the symmetries of the sphere:

e Up to symmetry, a triple of points x, y, z in a f-spherical code is
uniquely determined by

u=x-y, v=x-z, t=y-z,

with (u, v, t) in

{(1,171)} X:y:z
Ao ={(v,u,1):ue[-1,cos0]} x#y=z
A X, y, z distinct

where
A= {(u,v,t):uv,t€[-1,cos6],1+2uvt — uv?—v?—t* >0}

10

3-point bound for spherical codes (Bachoc-Vallentin 2008)

Based on two ingredients related to the symmetries of the sphere:

e Up to symmetry, a triple of points x, y, z in a f-spherical code is
uniquely determined by

u=x-y, v=x-z, t=y-z,

with (u, v, t) in

{(1,171)} X:y:z
Ao ={(v,u,1):ue[-1,cos0]} x#y=z
A X, y, z distinct

where
A= {(u,v,t):uv,t€[-1,cos6],1+2uvt — uv?—v?—t* >0}
e Matrix polynomials S](u, v, t) satisfying:

For every X C S"! finite, Z SP(x-y,x-z,y-t)=0.

X7y7Z€X 10

3-point bound for spherical codes (Bachoc-Vallentin 2008)

Then for every d > 0, the size of a §-spherical code is at most

min{fM e R: a) >0,Fx =0
d
Do+ F(LL) <M1,
k=0

d
ZakP,’J(u) +3F(u,u,1) < —1 for all u € [-1,cosb)],
k=0
F(u,v,t) <0 forall (u,v,t) € A}

where

d
F(u,v,t) = Z(Fk, Se(u, v, t)).

k=0

11

3-point bound for spherical codes (Bachoc-Vallentin 2008)

Then for every d > 0, the size of a §-spherical code is at most

min{fM e R: a) >0,Fx =0
d
Do+ F(LL) <M1,
k=0

d
ZakP,’J(u) +3F(u,u,1) < —1 for all u € [-1,cosb)],
k=0

F(u,v,t) <0 forall (u,v,t) € A}
where

d
F(u,v,t) = Z(Fk, Se(u, v, t)).

k=0
This leads to semidefinite upper bounds using sums of squares.

11

Why exact bounds?

Assume we know a configuration C with |C| = N.

12

Why exact bounds?

Assume we know a configuration C with |C| = N.

e Any upper bound < N + 1 is enough to prove that C is optimal.

12

Why exact bounds?

Assume we know a configuration C with |C| = N.

e Any upper bound < N + 1 is enough to prove that C is optimal.

e Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to NV, it is not hard to prove a rigorous upper
bound of the form N + &.

12

Why exact bounds?

Assume we know a configuration C with |C| = N.

e Any upper bound < N + 1 is enough to prove that C is optimal.

e Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to NV, it is not hard to prove a rigorous upper
bound of the form N + &.

So why do we want an exact sharp bound?

12

Why exact bounds?

Assume we know a configuration C with |C| = N.

e Any upper bound < N + 1 is enough to prove that C is optimal.

e Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to NV, it is not hard to prove a rigorous upper
bound of the form N + &.

So why do we want an exact sharp bound?

e Optimization: When does a bound give the independence number?

12

Why exact bounds?

Assume we know a configuration C with |C| = N.

e Any upper bound < N + 1 is enough to prove that C is optimal.

e Even if we do not solve the SDP exactly, if the numerical output of

the solver is very close to NV, it is not hard to prove a rigorous upper
bound of the form N + &.

So why do we want an exact sharp bound?

e Optimization: When does a bound give the independence number?

e Geometry: Sharp bounds provide additional information on optimal
configurations, leading to uniqueness proofs.

12

e For spherical codes, including kissing number:

e 2-point bound — linear programming bound
e 3-point bound — semidefinite programming bound

13

e For spherical codes, including kissing number:

e 2-point bound — linear programming bound
e 3-point bound — semidefinite programming bound

e For spherical codes in spherical caps, like hemisphere:

e Delsarte bound does not apply anymore due to the lack of symmetry.
e The 3-point bound can be adapted to a 2-point semidefinite
programming bound (Bachoc-Vallentin 2009).

13

Many examples of exact sharp LP bounds ...

14

Many examples of exact sharp LP bounds ...

But very few cases in which SDP bound is proven to be sharp while LP is
not:

14

Many examples of exact sharp LP bounds ...

But very few cases in which SDP bound is proven to be sharp while LP is
not:

e The Petersen code is the unique optimal 1/6-code in dimension 4
(Bachoc-Vallentin 2009, Dostert-de Laat-M 2020).

14

Many examples of exact sharp LP bounds ...
But very few cases in which SDP bound is proven to be sharp while LP is

not:

e The Petersen code is the unique optimal 1/6-code in dimension 4
(Bachoc-Vallentin 2009, Dostert-de Laat-M 2020).

e Numerically sharp for the square antiprism (Bachoc-Vallentin 2009)
— Rigorous proof (Dostert-de Laat-M 2020)

14

Many examples of exact sharp LP bounds ...

But very few cases in which SDP bound is proven to be sharp while LP is
not:

e The Petersen code is the unique optimal 1/6-code in dimension 4
(Bachoc-Vallentin 2009, Dostert-de Laat-M 2020).

e Numerically sharp for the square antiprism (Bachoc-Vallentin 2009)
— Rigorous proof (Dostert-de Laat-M 2020)

e F£g gives an optimal configuration on the hemisphere in dimension 8
(Bachoc-Vallentin 2009)
— Uniqueness (Dostert-de Laat-M 2020)

14

Solving an SDP: Rage against the machine precision

15

Solving an SDP: Rage against the machine precision

A semidefinite program:

H t 5
inf{ cx : , Bi(x) =0}
objective PSD constraints

with x the vector of unknowns, and B;(x) the blocks of x.

15

Solving an SDP: Rage against the machine precision

A semidefinite program:

H t 5
inf{ cx : , Bi(x) =0}
objective PSD constraints

with x the vector of unknowns, and B;(x) the blocks of x.

e Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El
Din 2018).

15

Solving an SDP: Rage against the machine precision

A semidefinite program:

H t 5
inf{ cx : , Bi(x) =0}
objective PSD constraints

with x the vector of unknowns, and B;(x) the blocks of x.

e Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El
Din 2018).

e For larger problems, SDP solvers provide approximate solutions in
floating point in polynomial time.

15

Solving an SDP: Rage against the machine precision

A semidefinite program:

H t 5
inf{ cx : , Bi(x) =0}
objective PSD constraints

with x the vector of unknowns, and B;(x) the blocks of x.

e Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El
Din 2018).

e For larger problems, SDP solvers provide approximate solutions in
floating point in polynomial time.

How can we turn an approximate solution into an exact one?

15

Solving an SDP: Rage against the machine precision

A semidefinite program:

H t 5
inf{ cx : , Bi(x) =0}
objective PSD constraints

with x the vector of unknowns, and B;(x) the blocks of x.

e Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El
Din 2018).

e For larger problems, SDP solvers provide approximate solutions in
floating point in polynomial time.

How can we turn an approximate solution into an exact one?

e Even if the SDP is defined over QQ, optimal solutions can require high
algebraic degree (Nie-Ranestad-Sturmfels 2008).

15

Solving an SDP: Rage against the machine precision

A semidefinite program:

H t 5
inf{ cx : , Bi(x) =0}
objective PSD constraints

with x the vector of unknowns, and B;(x) the blocks of x.

e Solving an SDP exactly is sometimes possible (Henrion-Naldi-Safey El
Din 2018).

e For larger problems, SDP solvers provide approximate solutions in
floating point in polynomial time.

How can we turn an approximate solution into an exact one?

e Even if the SDP is defined over QQ, optimal solutions can require high
algebraic degree (Nie-Ranestad-Sturmfels 2008).
e Our context: The problems provide a candidate field to round over,

either Q or Q(\/d). 15

Rounding over QQ: the affine conditions

Solve the SDP numerically in high precision (SDPA-GMP),

—> get an approximate solution x*:

16

Rounding over QQ: the affine conditions

Solve the SDP numerically in high precision (SDPA-GMP),
—> get an approximate solution x*:

o Ax* =~

16

Rounding over QQ: the affine conditions

Solve the SDP numerically in high precision (SDPA-GMP),
—> get an approximate solution x*:

o Ax* =~

e The blocks Bj(x*) might have negative near zero eigenvalues.

16

Rounding over QQ: the affine conditions

Solve the SDP numerically in high precision (SDPA-GMP),
—> get an approximate solution x*:

o Ax* =~

e The blocks Bj(x*) might have negative near zero eigenvalues.

We want to find a solution x close to x* and such that

Ax = b.

16

Rounding over QQ: the affine conditions

Solve the SDP numerically in high precision (SDPA-GMP),
—> get an approximate solution x*:

o Ax* =~

e The blocks Bj(x*) might have negative near zero eigenvalues.

We want to find a solution x close to x* and such that

Ax = b.

e Put the system into reduced row echelon form in rational arithmetic,

16

Rounding over QQ: the affine conditions

Solve the SDP numerically in high precision (SDPA-GMP),
—> get an approximate solution x*:

o Ax* =~

e The blocks Bj(x*) might have negative near zero eigenvalues.

We want to find a solution x close to x* and such that

Ax = b.
e Put the system into reduced row echelon form in rational arithmetic,

e Solve the system by backsubstitution. For every free variable, take a

value close to the corresponding value in x*.

16

Rounding over QQ: the affine conditions

Solve the SDP numerically in high precision (SDPA-GMP),
—> get an approximate solution x*:

o Ax* =~

e The blocks Bj(x*) might have negative near zero eigenvalues.

We want to find a solution x close to x* and such that

Ax = b.
e Put the system into reduced row echelon form in rational arithmetic,

e Solve the system by backsubstitution. For every free variable, take a

value close to the corresponding value in x*.

The linear system is then satisfied... But what about the PSD conditions?

16

Rounding over Q: the PSD conditions

17

Rounding over Q: the PSD conditions

o If all the eigenvalues of B;(x*) are far away from zero, B;(x) will be
positive definite.

17

Rounding over Q: the PSD conditions

o If all the eigenvalues of B;(x*) are far away from zero, B;(x) will be
positive definite.

e |f the dimension of the affine space is larger than that of the feasible
set, we are in trouble. How to deal with near zero eigenvalues?

17

Rounding over Q: the PSD conditions

o If all the eigenvalues of B;(x*) are far away from zero, B;(x) will be

positive definite.

e |f the dimension of the affine space is larger than that of the feasible
set, we are in trouble. How to deal with near zero eigenvalues?

e Sometimes, zero eigenvalues can be forced by some additional affine
constraints coming from an optimal configuration.
This is sometimes enough... (Cohn-Woo 2012).

17

Rounding over Q: the PSD conditions

o If all the eigenvalues of B;(x*) are far away from zero, B;(x) will be

positive definite.

e |f the dimension of the affine space is larger than that of the feasible
set, we are in trouble. How to deal with near zero eigenvalues?

e Sometimes, zero eigenvalues can be forced by some additional affine
constraints coming from an optimal configuration.
This is sometimes enough... (Cohn-Woo 2012).

e Sometimes not. By undertsanding the kernels, we can force all these

constraints!
17

Rounding over Q: the complete procedure

1. Compute an approximate solution x*.

18

Rounding over Q: the complete procedure

1. Compute an approximate solution x*.

2. Compute the kernels of the B;(x*)'s and detect the expected
kernels of the B;(x)'s using LLL.

18

Rounding over Q: the complete procedure

1. Compute an approximate solution x*.

2. Compute the kernels of the B;(x*)'s and detect the expected
kernels of the B;(x)'s using LLL.

3. Include the new linear constraints in the linear system Ax = b.

18

Rounding over Q: the complete procedure

1. Compute an approximate solution x*.

2. Compute the kernels of the B;(x*)'s and detect the expected
kernels of the B;(x)'s using LLL.

3. Include the new linear constraints in the linear system Ax = b.

4. Row reduce the linear system.

18

Rounding over Q: the complete procedure

1. Compute an approximate solution x*.

2. Compute the kernels of the B;(x*)'s and detect the expected
kernels of the B;(x)'s using LLL.

3. Include the new linear constraints in the linear system Ax = b.
4. Row reduce the linear system.

5. Solve it with backsubstitution using x*.

18

Rounding over Q: the complete procedure

1. Compute an approximate solution x*.

N

Compute the kernels of the B;(x*)'s and detect the expected
kernels of the B;(x)'s using LLL.

Include the new linear constraints in the linear system Ax = b.
Row reduce the linear system.

Solve it with backsubstitution using x*.

o & = W

Check that the blocks of the rounded solution are indeed PSD.

18

Rounding over Q: the complete procedure

1. Compute an approximate solution x*.

N

Compute the kernels of the B;(x*)'s and detect the expected
kernels of the B;(x)'s using LLL.

Include the new linear constraints in the linear system Ax = b.
Row reduce the linear system.

Solve it with backsubstitution using x*.

o & = W

Check that the blocks of the rounded solution are indeed PSD.

Thank you!

18

