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Optimal s-energy and Log-optimal codes

Find the (most) stable (ground state) energy
configuration (code) of N classical electrons
(Coulomb law) constrained to move on the

sphere S?.
A code C := {Xy,...,Xxy} C S? that minimizes Riesz s-energy

1
Es(C) = Z ——= $>0, Eiog(wn) : Z g _ Xk|

Tk X=Xl j7k

is called an optimal s-energy code (log-optimal for s = 0)
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Optimal s-energy codes on S?

s = log, Whyte’s problem (1952, Monthly) (N =2 — 6, 12);

s =1, Thomson Problem (known for N =2 — 6, 12)

s = —1, Fejes-Toth Problem (known for N =2 — 6, 12)

S — oo, Tammes Problem (known for N =1 — 12, 13,14, 24)

| N

For fixed N, any limit as s — oo of optimal s-energy codes is an
optimal (maximal) code.

| \

The codes with cardinality N = 2,3,4,6,12 are special (sharp codes)
and minimize large class of potential energies. First "non-sharp" is
N =5 and very little is rigorously proven.




Peter Dragnev and Oleg Nusin

Optimal five point log and Riesz s-energy code on S?

(@) (b) ()

Figure: ‘Optimal’ 5-point codes on S2: (a) bipyramid BP, (b) optimal
square-base pyramid SBP (s = 1) , (c) ‘optimal’ SBP (s = 16).

e 5= 0: P. Dragney, D. Legg, and D. Townsend, (2002)

(referred to by Ed Saff as “Mastodon” theorem);
e s = —1: X. Hou, J. Shao, (2011), computer-aided proof;
s =1,2: R. E. Schwartz (2013), computer-aided proof;
Bondarenko-Hardin-Saff (2014), As s — oo, any optimal s-energy codes
of 5 limit is a square pyramid with base in the Equator;
0 < s < 15.04..: R. E. Schwartz (2018).
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Optimal five point log and Riesz s-energy code on S?

(@) (b) (c)

Figure: ‘Optimal’ 5-point code on S?: (a) bipyramid BP, (b) optimal
square-base pyramid SBP (s = 1), (c) ‘optimal’ SBP (s = 16).
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*Melnik et.el. 1977 s* — 15.04 . ..2

Figure: 5 points energy ratio
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“Mastodon” Theorem on S and S* (Dragnev - 2016)

Two vertices x; and x; are called mirror related (we write X; ~ X;), if
IXj — Xx| = [X; — X|, for every k # i, j.

A log-stationary configuration is either (a) degenerate; (b) there exists
a vertex with all edges stemming out being equal; or (c) every vertex
is mirror related to another vertex. )
Mirror relation is equivalence relation and an equivalence class forms
a regular simplex in the spanning affine hyperspace.

The (d + 3)-Log-optimal configuration in S', S?, S, S*, is two
orthogonal simplexes of type {2,2}, {2,3}, {3,3}, {3,4} respectively.
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“Mastodon” Theorem on S?~' (Musin, D. - 2020)

Up to orthogonal transform, every relative minimum of the logarithmic
energy Eiog(X) of d + 2 points on S9—" consists of two regular
simplexes of cardinality m > n> 1, m+ n = d + 2, such that these
simplexes are orthogonal to each other. The global minimum occurs
when m = n ifd is even and m = n+ 1 otherwise.




“Mastodon” Theorem on S~ (Musin, D. - 2020)

Up to orthogonal transform, every relative minimum of the logarithmic
energy Eiog(X) of d + 2 points on S9—" consists of two regular
simplexes of cardinality m > n> 1, m+ n = d + 2, such that these
simplexes are orthogonal to each other. The global minimum occurs
when m = n ifd is even and m = n+ 1 otherwise. )
‘Remark
The only two other classes of minimal energy configurations are the

regular simplex (d + 1 points on S%=') and the regular cross polytope
(2d points on S?—), both of which are universally optimal.
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Stationary Configurations of d + 2 points on S?-

A point configuration is called degenerate if it is contained in an
affine hyperplane. (Ex. Pentagon on S?)

| A

LetN=d+2and X = {xy,...,Xn} be a non-degenerate stationary
logarithmic configuration on S°—'. Suppose there is no point x € X
that is equidistant to all other points in X. Then X can be split into two
sets such that these sets are vertices of two regular orthogonal
simplexes with the centers of mass in the center of 9.

Strengthens 2016 Characterization theorem significantly.
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Stationary Configurations of d + 2 points on S~

Given potential interaction function h: [-1,1] — R h-energy is

En(X):= > h(x-x).

1<i#<N

Let X be any degenerate configuration, N > d + 2, and
h:[—1,1] — R be a strictly convex potential function. Then there
exists a continuous perturbation that decreases the h-energy Ep(X).

A non-degenerate stationary log-energy configuration of type
{1.,1,...,k, I}, where1 +1+-.-+ k+ /= d+ 2 is a saddle point.
Moreover, there is a continuous perturbation that decreases the
logarithmic energy of the {1, k, I} part of the configuration to either
{k+1,1} or {k,| + 1}. Sequence of such perturbations leads to
relative minima as described in Main Theorem.
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Auxiliary Results

Using Lagrange Multipliers method to logarithmic energy

’
Eiog(X) =5 > log(xi Xi— 2x; - X;+ X - X)),
1<I#<N

and differentiating yields

Xi — X ,

Y S =xixi i=1,...,N, where rj :=1-x;- X;.
— i.j

j#i

Taking inner product of both sides with x; one obtains A\; = N —1, or

SSE S (N—1)x, i=1,...,N. (1)
— [
j#i

Summing (1) implies that the centroid lies at the origin, and hence

=N, i=1,.,N. )
J
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Auxiliary Results - Rank Lemma

Let ]
B=(by), bj:= P bij =N —1 —Zb,-j,
! j#i
N -1
A= (ay), where gj:=c—bj, c:= —
LetX = {xq,...,xy} be a stationary logarithmic configuration on S%~

that is non-degenerate. Then
N
rank(A) < N —d — 1, > a;=0, i=1,...,N.
j=1

IfN =d+2, then rank(A) =1.
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Proof of the Rank Lemma

Let X := [xy,...,xn]". The force equations (1) and (2) imply that

N N
> bjx=0, Y bj=N-1.
j=1 j=1

In other words, BX = 0 and B1 = (N — 1)1, where 1 denotes the
N-dimensional column-vector of ones.

As X is non-degenerate, we have rank X = d. Therefore, the
column-vectors of X are linearly independent.

Since 1 is eigenvector of B with an eigenvalue of N — 1, it is linearly
independent to the columns of X (eigenvectors with eigenvalue 0).

The lemma follows from the rank-nullity theorem applied to
AX,1]=0.
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Auxiliary Results - N =d + 2

The following lemma elaborates on the case when N = d + 2.

LetN=d+2and X = {xy,...,Xn} be a non-degenerate stationary
logarithmic configuration on S?—1. Without loss of generality we may
assume thata;j >0fori=1,...kanda;j<0fori=k+1,...N. Let

a=+vaji=1,...k a=—Va,i=k+1,...N.

Then
aj = a; aj, a+...+ayv=0,

c—aag > %, forall i # j,

> ! =N, i=1,...,N. (3)

= C— ag;
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Auxiliary Results - Supplemental Theorem

If a; = 0 then the i-th row and ij-th column in A are zero x; is
equidistant to all other points x;. So, @i #0foralli=1,...,N.

Let ay,...,an be real numbers that satisfy the following assumptions

a>...>2a>0>a41>...>2ay, a+...,+av=0,

> ! =N,i=1,...,N, c—aa >0, forall i# ],
#ic—a,-a,-

where ¢ := NZ1. Then

a =...=ak, ak+1=...= an.
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Auxiliary Results - Technical Lemma

Suppose ay, . .., ay are as in Supplemental Theorem. Then for all
i=1,...,N we have
c—&
= L =N-2 (4)
< c-ag
and
|a/|<\/67 I:17 7N (5)
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Proof of the Technical Lemma - Eq. (4)

Denote
1 a; — &;a;
Q= Ri = R .
=2 c—aag Z c— aa; Z a;a;
J#i i i
By the assumption Q; = N for all i, we get (recall a; # 0)
Cc— aag
N-1=> """ =cQ-aR=N-1-ahR,
— C— &;q;
J#i
or R =0. Along with a; = —(ay + ... + @j—1 + @i11 + ...an)
> a; aj a;a;
ai=(c— & -» a=a) ———=4a5,
! ( ’)Zc—a;aj Zl I.. C— ag; =
J#i J#i J#
or S; = 1 and subsequently
c—aa c—a&
N
Cc— ag; ~ c-ag

J#i
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Proof of the Technical Lemma - Ineq. (5)

W.Lg. |a1| > |ai|. From S; = 1 we have
g-ay _a&-am & ag

1: =
C — a;g; C — ajay Z C—

J#i o<z © T 8
Then 2
- — a;a; c— & .
> é—a-a-:c—a-;’ i=2,...,N.
2<jAi ot et
Therefore,
N
a,a, 1 »
c—a =(c—a7)Qy.
ZZ Z - aa, = (=&)Y =g = (=)0
i=2 2</7£/ i=2

Since @y = N and by the assumption ¢ — a;a; > 0, we have

c- aZ_NZ c— a,a, 0. ©)

i>j=2

Thus, (6) implies ¢ — & > 0. O
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Proof of Supplemental Theorem

Let N
c—&
F(t) = L
(t) Z Cc— ta,-
J=1
Then Technical Lemma implies thatforalli=1,...,N
Fla)=N-1. (7)
Since
(c-2)&

F//(t) = 2; W,

by Technical Lemma again we have F”(t) > 0 for t € (—+/c,/C).
Hence F(t) is a convex function in this interval. Therefore, the
equation F(t) = N — 1 has at most two solutions. By assumptions we
have a; > 0fori=1,...,kand a; < 0,fori=k+1,...,N. Thus, (7)
yields that all positive a; are equal and all negative a; are equal too. OJ



Proofs of Degenerate, Equidistant, and Relative

Minima cases

Even more complex and involved :-(



Peter Dragnev and Oleg Nusin

Degenerate case - h-energy

Let X be a degenerate configuration, N > d +2,and h:[-1,1] = R
be a strictly convex potential function. Then there exists a continuous
perturbation that decreases the h-energy Ep(X).

r,v/1-r2,0,...,0),x2 = (r,—/1—-1r2,0,..
)(/:(Cj1vcj27cj37"'a )7_/: 7"'7N7
where ¢z, # 0. Preturb to X

X1 =(r,v/1—r?cos0,0,...,v/1—r?sin0),
%o = (r,—v1—1r2cos6,0,...,—/1—r2sin0).

Then Ex(X) > Ex(X) O
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Equidistant case

A non-degenerate stationary log-energy configuration of type
{1,1,...,k,t}, where1 +1+---+ k+{=d+ 2 is a saddle point.
Moreover, there is a continuous perturbation that decreases the
logarithmic energy of the {1, k, ¢} part of the configuration to either
{k+1,¢} or{k,¢ + 1}. Sequence of such perturbations leads to
relative minima as described in Main Theorem.
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Equidistant case proof

Let X = {1,k, £} with xy - X; = —1/(N — 1). Denote x; = (yi, 75 ),
zi:= (N —1)y;//N(N —2), z; € S92 satisfies force equation.

Y= {(y/1-1/(k+m)?y;,0n1,-1/(k+m))},

Z = {(Ok-1,1/1 = 1/(k+ m)2z,—1/(k + m))}

Perturb to

{<\/1 (mt +1/(k +m))2 yi, 01, —1/(k + m) — mt)}ik_1

m

Z = {(ok_1,\/1 ~ (kt— 1/(k+m))2zj,_1/(k+m)~|—kt>}

=1

Then En(X;) has local max at t = 0 and decreases to {k, ¢+ 1} or
{k+1,0}. 0

y
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Relative minima case

Let X = {k, ¢} a configuration of two orthogonal simplexes Xy and X;.
Any perturbation will increase the energy locally.

We need two inequalities.
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Relative minima case - Inequality 1

Let A = (a;) be an m x m matrix, m > 3, such that
@a;=0, i=1,....,m;

(b) Y774 aj = 0.

Then the following inequality holds

1 u
> (aj+a) > > > x?, where x:=) a;.  (8)
J=1 i=1

1<i<j<m
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Proof of Inequality 1: part 1

Foralli,j=1,..., mdefine

1 X+ m—1
m2—-2m~" " m2—-2m

Bij ==

X, i#j, and B;=0.
Since > x; = 0, we have 37, 8 = 0and 37", B = x;, i.e.
m m m m
D Bi=) a and Y Bj=> a.
=1 j=1 =1 i—1

Let a; := aj — Bj. Then

> ;=) ;=0
i i
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S eter Uragnev and Oleg Ausin
Proof of Inequality 1: part 2

Consider t,, = agj + @i = Wi+ B + B, where wj = 5,, + aji. Then

ti = wj+ 25 + 15, /, where 3, wj = 3, wj = 0 (observe that
ti = 0). Then
m
=X (Wit =D Wit 2 X
/] m— 2 /
i<j i<j i<j i=1

which implies (8).
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Relative minima case - Inequality 2

Given an m x n matrix F = (f;) and an n x m matrix G = (gj;) such
that " fj=0foralli=1,...,mand " g; = 0 for all
i=1,...,n. Then we have

ZZ(’"]"’gﬂ) >_Zyj Zziza
5

i=1 j=1

m n
Vi=> f z:=>_ g
= =
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Proof of Inequality 2

Let B Vi 5
f,‘jZZf,‘j—El and glj —g,j——l.

Since >y, =3,z = 0, we have Z,,( i+ gji) = 0. Let ::7,-,- + gji-

Observe that
m n
D= ;=0
i=1 j=1
From Vi
fi+ gji = =L —I— + tj.

one derives that

m n

m m n m
D) BUIFILED 95 I C/NENNN N 9) B 200 ST g
i=1 j=1 j=1 i=1

i=1 j=1 i=1 j=1

3>

which completes the proof.



Relative minima case - Proof (part 1)
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Perturb the two orthogonal simplexes (k + ¢ = d + 2)

Xk = {X1, X2, ..., Xk}, Xo = {Xkq1, Xme2, - s Xeye

to Y = Yk U Y., where y; := X + h;, || hi|| < e Since [[x]| = |lyil| =1,
we have 2x; - hj = —|\hi|2, 1 — yi- y; = (1 — xi - X;)(1 — z;j), where

Zij =

k—1

XXy by by, 1< <K

Xi- hj + x; - hj + h; - b, i<k<jorj<k<i (9)

£—1 .
T(X/'hj-i-)(j-hi—l—hi-hj), k<i#j<k+¢

Clearly |z;| < 2¢ + O(€?). We find

2
2[Eue(Y) ~ EwX] = (zf,/+%>+0<e3). (10)

1<iAj<k+t
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Relative minima case - Proof (part 2)

W|g Xi = (p,‘, 0), hi = (a,-, b,‘), Xk+j = (0, q/'), hk+j = (C/', dl)7 where
pi, ai, ¢; € Rk and g;, b;, dj € R~ Straight-forward calculations
show that the linear in ¢ term in (10) vanishes. The quadratic term is

hi-hp A Xi- hi+x - h\
D= i1y ! /AL
Z 1—X.Xj+2 Z ( 1 — XX

1<iAj<k+e 1<iAj<k+0

k+¢ k k 4 14
AE AL - (15l s I0l) -+ (15 al + I

k—1)\2 ,  [(L—1\? »
2l G Y (pi-gtp-a)+ 7 > (G-d+q-d)

1<i<j<k 1<i<j<t
(11)

k ¢

+Y ) PG+ b)?.

i=1 j=1



Peter Dragnev and Oleg Nusin

Relative minima case - Proof (part 3)

By extracting another O(e%) term we may reduce the condition
2X; - h,' = —||h,‘||2 to x; - h,' =0.
Thus, in this case we shall reduce the theorem to proving the

inequalities
2
Dy = (k%) Y (pi-a+pa) —kHZa, 20 (12)
1<i<j<k
0—1\?
1<i<j<t
and

k ¢ 1 k 1 14 2
=33 oG+ g-bP - I o bR 7| 3af =0 (14
i=1 j=1

i=1 j=1

provided {p1,...,px} and {qs, ..., g} are orthogonal k- and
¢-simplexes and p; - @i = 0 and q; - d; = 0.
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Relative minima case - Proof (part 4)

Embed the first simplex Xx = {p1, ..., px} in the hyperplane of R¥ that
is orthogonal to (1,1,...,1). Similarly, we embed the second simplex
={q1,...,q} in RY. Thus, we embed Xx U X; C R¥ x RE.

Let we = (3, %,.--, ) € RX, b := & — Wk, 0 pj = /%5 pi. Similarly,

if gy := 6 — wy, then g = /755 G-

For the perturbation vectors a;, b;, ¢;, d;, we have

k ¢ K '
Zai/':O, Zb,-,:o, ZCI-I-ZQ Zdij:O
= J=T j=1 j=1

pi-ai=0=a;=0,qg;-d=0= a; =0. Using p; - g = a; (12) is

2

> (@@l 1z<za,,> ,

1<i<j<k

which follows from Lemma (H1). Similarly one gets (13).
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Relative minima case - Proof (part 5)

Equality in (12) and (13) holds iff g; + @ =0and d; + d; =0
respectively, which is equivalent to

pi-aj+p-a=00-d+qg d=0> a=0> d=0.

Lemma (H2) is used to derive the inequality (14). We have that

k 14
pi'q+Qj'bi:\/k_1QI+\/€_1bU

with the substitution f; = |/ /A5 bj and g; = |/ 2% ¢ we re-write (14)
as

Lk

s 11K, Thk-1&,
22 ka2 g > g 2 A
j= j=

i=1 j=1

which clearly follows from Lemma (H2). Moreover, equality occurs if
andonlyifp;-¢i+q-b =0, ¢ci=0,and ) b;=0.
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Relative minima case - Proof (part 6)

So, the quadratic in e term D > 0, or Ej,(Y) — Ejoe(X) > 0, for any
perturbation vectors {a;, b;, ¢, di} (p; - ai = 0, g; - d; = 0), except when

pi-&+pj-a=0 @-di+q-d=0 pi-¢+q- b=0,
k k 0 ¢
Y a=0 ) b=0)> ¢=0 > d=0.
i=1 i=1 j=1 j=1
Utilizing (9) and these conditions, one simplifies (10) to

_1)2 _1)2
21Em(Y) ~ B0 =0 S (@ogp s U S (aap

Clearly, the quartic term will be positive, unless all inner products
vanish, in which case we easily derive that a; = ¢;=0and b = d; =0
foralli=1,...,kandj=1,... ¢ This completes the proof. O
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THANK YOU!



