Mastodon Theorem - 20 Years in the Making

P. D. Dragnev - Purdue University Fort Wayne (PFW)

Combinatorics and Geometry Days III - MIPT, December 4, 2020

*Jointly with Oleg Musin

Optimal s-energy and Log-optimal codes

Thomson Problem (1904) - ("plum pudding" model of an atom)

Find the (most) stable (ground state) energy configuration (**code**) of *N* classical electrons (Coulomb law) constrained to move on the sphere \mathbb{S}^2 .

Generalized Thomson Problem $(1/r^s \text{ potentials and } \log(1/r))$

A code $C := {\mathbf{x}_1, \dots, \mathbf{x}_N} \subset \mathbb{S}^2$ that minimizes **Riesz** *s*-energy

$$E_{\mathcal{S}}(\mathcal{C}) := \sum_{j
eq k} rac{1}{|\mathbf{x}_j - \mathbf{x}_k|^{\mathcal{S}}}, \quad \mathcal{S} > 0, \quad E_{\log}(\omega_{\mathcal{N}}) := \sum_{j
eq k} \log rac{1}{|\mathbf{x}_j - \mathbf{x}_k|}$$

is called an optimal s-energy code (log-optimal for s = 0)

Optimal s-energy codes on S²

Known optimal s-energy codes on S²

- $s = \log$, Whyte's problem (1952, Monthly) (N = 2 6, 12);
- s = 1, Thomson Problem (known for N = 2 6, 12)
- s = -1, Fejes-Toth Problem (known for N = 2 6, 12)
- $s \rightarrow \infty$, Tammes Problem (known for N = 1 12, 13, 14, 24)

Limiting case - Best packing

For fixed *N*, any limit as $s \to \infty$ of optimal *s*-energy codes is an optimal (maximal) code.

Universally optimal codes

The codes with cardinality N = 2, 3, 4, 6, 12 are special (*sharp codes*) and minimize large class of potential energies. First "non-sharp" is N = 5 and very little is rigorously proven.

Optimal five point log and Riesz *s*-energy code on S²

Figure: 'Optimal' 5-point codes on \mathbb{S}^2 : (a) bipyramid BP, (b) optimal square-base pyramid SBP (s = 1), (c) 'optimal' SBP (s = 16).

- s = 0: P. Dragnev, D. Legg, and D. Townsend, (2002) (referred to by Ed Saff as "Mastodon" theorem);
- s = -1: X. Hou, J. Shao, (2011), computer-aided proof;
- *s* = 1, 2: R. E. Schwartz (2013), computer-aided proof;
- Bondarenko-Hardin-Saff (2014), As s → ∞, any optimal s-energy codes of 5 limit is a square pyramid with base in the Equator;
- 0 < s < 15.04..: R. E. Schwartz (2018).

Peter Dragnev and Oleg Musin

Optimal five point log and Riesz *s*-energy code on \mathbb{S}^2

Figure: 'Optimal' 5-point code on \mathbb{S}^2 : (a) bipyramid BP, (b) optimal square-base pyramid SBP (s = 1), (c) 'optimal' SBP (s = 16).

"Mastodon" Theorem on \mathbb{S}^3 and \mathbb{S}^4 (Dragnev - 2016)

Definition

Two vertices \mathbf{x}_i and \mathbf{x}_j are called *mirror related* (we write $\mathbf{x}_i \sim \mathbf{x}_j$), if $|\mathbf{x}_i - \mathbf{x}_k| = |\mathbf{x}_j - \mathbf{x}_k|$, for every $k \neq i, j$.

Theorem (Characterization of (d+3) Log-stationary configurations)

A log-stationary configuration is either (a) degenerate; (b) there exists a vertex with all edges stemming out being equal; or (c) every vertex is mirror related to another vertex.

Remark

Mirror relation is equivalence relation and an equivalence class forms a regular simplex in the spanning affine hyperspace.

Theorem (Dragnev - 2016)

The (d + 3)-Log-optimal configuration in \mathbb{S}^1 , \mathbb{S}^2 , \mathbb{S}^3 , \mathbb{S}^4 , is two orthogonal simplexes of type $\{2,2\}$, $\{2,3\}$, $\{3,3\}$, $\{3,4\}$ respectively.

"Mastodon" Theorem on \mathbb{S}^{d-1} (Musin, D. - 2020)

Theorem (Main Theorem 1)

Up to orthogonal transform, every relative minimum of the logarithmic energy $E_{\log}(X)$ of d + 2 points on \mathbb{S}^{d-1} consists of two regular simplexes of cardinality $m \ge n > 1$, m + n = d + 2, such that these simplexes are orthogonal to each other. The global minimum occurs when m = n if d is even and m = n + 1 otherwise.

"Mastodon" Theorem on \mathbb{S}^{d-1} (Musin, D. - 2020)

Theorem (Main Theorem 1)

Up to orthogonal transform, every relative minimum of the logarithmic energy $E_{\log}(X)$ of d + 2 points on \mathbb{S}^{d-1} consists of two regular simplexes of cardinality $m \ge n > 1$, m + n = d + 2, such that these simplexes are orthogonal to each other. The global minimum occurs when m = n if d is even and m = n + 1 otherwise.

Remark

The only two other classes of minimal energy configurations are the regular simplex $(d + 1 \text{ points on } \mathbb{S}^{d-1})$ and the regular cross polytope (2d points on \mathbb{S}^{d-1}), both of which are universally optimal.

Stationary Configurations of d + 2 points on \mathbb{S}^{d-1}

Definition

A point configuration is called **degenerate** if it is contained in an affine hyperplane. (Ex. Pentagon on \mathbb{S}^2)

Theorem (Non-degenerate, non-equidistant case)

Let N = d + 2 and $X = \{x_1, ..., x_N\}$ be a non-degenerate stationary logarithmic configuration on \mathbb{S}^{d-1} . Suppose there is no point $x \in X$ that is equidistant to all other points in X. Then X can be split into two sets such that these sets are vertices of two regular orthogonal simplexes with the centers of mass in the center of \mathbb{S}^{d-1} .

Remark

Strengthens 2016 Characterization theorem significantly.

Stationary Configurations of d + 2 points on \mathbb{S}^{d-1}

Given potential interaction function $h: [-1, 1] \rightarrow \mathbb{R}$ *h-energy* is

$$E_h(X) := \sum_{1 \le i \ne j \le N} h(x_i \cdot x_j).$$

Theorem (Degenerate Case - *h*-energy)

Let X be any degenerate configuration, $N \ge d + 2$, and $h : [-1, 1] \rightarrow \mathbb{R}$ be a strictly convex potential function. Then there exists a continuous perturbation that decreases the h-energy $E_h(X)$.

Theorem (Equidistant case)

A non-degenerate stationary log-energy configuration of type $\{1, 1, ..., k, l\}$, where $1 + 1 + \dots + k + l = d + 2$ is a saddle point. Moreover, there is a continuous perturbation that decreases the logarithmic energy of the $\{1, k, l\}$ part of the configuration to either $\{k + 1, l\}$ or $\{k, l + 1\}$. Sequence of such perturbations leads to relative minima as described in Main Theorem.

Auxiliary Results

Using Lagrange Multipliers method to logarithmic energy

$$E_{Log}(X) := -rac{1}{2}\sum_{1\leq i
eq j\leq N}\log(x_i\cdot x_i - 2x_i\cdot x_j + x_j\cdot x_j),$$

and differentiating yields

$$\sum_{j\neq i} \frac{x_i - x_j}{r_{i,j}} = \lambda_i x_i \quad i = 1, \dots, N, \text{ where } r_{ij} := 1 - x_i \cdot x_j.$$

Taking inner product of both sides with x_i one obtains $\lambda_i = N - 1$, or

$$\sum_{j \neq i} \frac{x_i - x_j}{r_{i,j}} = (N-1) x_i, \quad i = 1, \dots, N.$$
 (1)

Summing (1) implies that the centroid lies at the origin, and hence

$$\sum_{j} r_{ij} = N, \quad i = 1, \dots, N.$$
(2)

Auxiliary Results - Rank Lemma

Let

$$B = (b_{ij}), \quad b_{ij} := rac{1}{r_{ij}}, \quad b_{ii} := N - 1 - \sum_{j
eq i} b_{ij},$$

 $A = (a_{ij}), ext{ where } a_{ij} := c - b_{ij}, \quad c := rac{N-1}{N}.$

Lemma

Let $X = \{x_1, ..., x_N\}$ be a stationary logarithmic configuration on \mathbb{S}^{d-1} that is non-degenerate. Then

$$\operatorname{rank}(A) \le N - d - 1, \qquad \sum_{j=1}^{N} a_{jj} = 0, \quad i = 1, \dots, N$$

If N = d + 2, then $\operatorname{rank}(A) = 1$.

Proof of the Rank Lemma

Let $X := [x_1, \ldots, x_N]^T$. The force equations (1) and (2) imply that

$$\sum_{j=1}^{N} b_{ij} x_j = 0, \quad \sum_{j=1}^{N} b_{ij} = N - 1.$$

In other words, BX = 0 and $B\mathbf{1} = (N - 1)\mathbf{1}$, where **1** denotes the *N*-dimensional column-vector of ones.

As X is non-degenerate, we have rank X = d. Therefore, the column-vectors of X are linearly independent.

Since **1** is eigenvector of *B* with an eigenvalue of N - 1, it is linearly independent to the columns of X (eigenvectors with eigenvalue 0).

The lemma follows from the rank-nullity theorem applied to A[X, 1] = 0.

Auxiliary Results - N = d + 2

The following lemma elaborates on the case when N = d + 2.

Lemma

Let N = d + 2 and $X = \{x_1, ..., x_N\}$ be a non-degenerate stationary logarithmic configuration on \mathbb{S}^{d-1} . Without loss of generality we may assume that $a_{1i} \ge 0$ for i = 1, ..., k and $a_{1i} < 0$ for i = k + 1, ..., N. Let

$$a_i = \sqrt{a_{ii}}, i = 1, \dots k; a_i = -\sqrt{a_{ii}}, i = k + 1, \dots N_k$$

Then

$$a_{ij} = a_i a_j, \quad a_1 + \ldots + a_N = 0,$$

$$c - a_i a_j \ge \frac{1}{2}, \text{ for all } i \neq j,$$

$$\sum_{j \neq i} \frac{1}{c - a_i a_j} = N, \ i = 1, \ldots, N.$$
(3)

Auxiliary Results - Supplemental Theorem

If $a_i = 0$ then the *i*-th row and *i*-th column in *A* are zero x_i is equidistant to all other points x_i . So, $a_i \neq 0$ for all i = 1, ..., N.

Theorem (Supplemental)

Let a_1, \ldots, a_N be real numbers that satisfy the following assumptions

$$a_1 \geq \ldots \geq a_k > 0 > a_{k+1} \geq \ldots \geq a_N, \quad a_1 + \ldots, + a_N = 0,$$

$$\sum_{j\neq i}\frac{1}{c-a_ia_j}=N,\ i=1,\ldots,N,\quad c-a_ia_j>0,\ \text{ for all }\ i\neq j,$$

where $c := \frac{N-1}{N}$. Then

$$a_1 = \ldots = a_k, \quad a_{k+1} = \ldots = a_N.$$

Auxiliary Results - Technical Lemma

Lemma (Technical)

Suppose a_1, \ldots, a_N are as in Supplemental Theorem. Then for all $i = 1, \ldots, N$ we have

$$T_i := \sum_{j \neq i} \frac{c - a_j^2}{c - a_i a_j} = N - 2.$$
 (4)

and

$$|a_i| < \sqrt{c}, \quad i = 1, \dots, N.$$
(5)

Proof of the Technical Lemma - Eq. (4)

Denote

$$Q_i := \sum_{j \neq i} rac{1}{c-a_i a_j}, \quad R_i := \sum_{j \neq i} rac{a_j}{c-a_i a_j}, \quad S_i := \sum_{j \neq i} rac{a_j^2 - a_j a_i}{c-a_i a_j}.$$

By the assumption $Q_i = N$ for all *i*, we get (recall $a_i \neq 0$)

$$N-1=\sum_{j\neq i}rac{c-a_ia_j}{c-a_ia_j}=c\,Q_i-a_iR_i=N-1-a_iR_i,$$

or $R_i = 0$. Along with $a_i = -(a_1 + ... + a_{i-1} + a_{i+1} + ... a_N)$

$$a_i=(c-a_i^2)\sum_{j
eq i}rac{a_j}{c-a_ia_j}-\sum_{j
eq i}a_j=a_i\sum_{j
eq i}rac{a_j^2-a_ja_i}{c-a_ia_j}=a_iS_i,$$

or $S_i = 1$ and subsequently

$$N-2 = \sum_{j \neq i} \frac{c - a_i a_j}{c - a_i a_j} - S_i = \sum_{j \neq i} \frac{c - a_j^2}{c - a_i a_j} = T_i$$

Proof of the Technical Lemma - Ineq. (5)

W.l.g. $|a_1| \ge |a_i|$. From $S_i = 1$ we have

$$1 = \sum_{j \neq i} \frac{a_j^2 - a_i a_j}{c - a_i a_j} = \frac{a_1^2 - a_i a_1}{c - a_i a_1} + \sum_{2 \le j \ne i} \frac{a_j^2 - a_i a_j}{c - a_i a_j}$$

Then

$$\sum_{2 \le j \ne i} \frac{a_j^2 - a_i a_j}{c - a_i a_j} = \frac{c - a_1^2}{c - a_i a_1}, \quad i = 2, \dots, N.$$

Therefore,

$$\sum_{i=2}^{N} \sum_{2 \le j \ne i} \frac{a_j^2 - a_i a_j}{c - a_i a_j} = \sum_{i>j=2}^{N} \frac{(a_i - a_j)^2}{c - a_i a_j} = (c - a_1^2) \sum_{i=2}^{N} \frac{1}{c - a_i a_1} = (c - a_1^2) Q_1.$$

Since $Q_1 = N$ and by the assumption $c - a_i a_j > 0$, we have

$$c-a_1^2=rac{1}{N}\sum_{i>j=2}^Nrac{(a_i-a_j)^2}{c-a_ia_j}>0.$$
 (6)

Thus, (6) implies $c - a_i^2 > 0$.

Proof of Supplemental Theorem

Let

$$F(t) := \sum_{j=1}^N rac{c-a_j^2}{c-ta_j}.$$

Then Technical Lemma implies that for all i = 1, ..., N

$$F(a_i) = N - 1. \tag{7}$$

Since

$${\cal F}''(t)=2\sum_{j}rac{\left(c-a_{j}^{2}
ight) a_{j}^{2}}{(c-ta_{j})^{3}},$$

by Technical Lemma again we have F''(t) > 0 for $t \in (-\sqrt{c}, \sqrt{c})$. Hence F(t) is a convex function in this interval. Therefore, the equation F(t) = N - 1 has at most two solutions. By assumptions we have $a_i > 0$ for i = 1, ..., k and $a_i < 0$, for i = k + 1, ..., N. Thus, (7) yields that all positive a_i are equal and all negative a_i are equal too. \Box

Peter Dragnev and Oleg Musin

Proofs of Degenerate, Equidistant, and Relative Minima cases

Even more complex and involved :-(

Degenerate case - *h*-energy

Theorem (Degenerate Case)

Let X be a degenerate configuration, $N \ge d + 2$, and $h : [-1, 1] \rightarrow \mathbb{R}$ be a strictly convex potential function. Then there exists a continuous perturbation that decreases the h-energy $E_h(X)$.

Proof.

$$x_1 = (r, \sqrt{1 - r^2}, 0, \dots, 0), x_2 = (r, -\sqrt{1 - r^2}, 0, \dots, 0),$$

 $x_j = (c_{j1}, c_{j2}, c_{j3}, \dots, 0), j = 3, \dots, N,$

where $c_{32} \neq 0$. Preturb to X

$$\tilde{x}_1 = (r, \sqrt{1-r^2}\cos\theta, 0, \dots, \sqrt{1-r^2}\sin\theta),$$

$$\tilde{x}_2 = (r, -\sqrt{1-r^2}\cos\theta, 0, \dots, -\sqrt{1-r^2}\sin\theta).$$

Then $E_h(X) > E_h(\widetilde{X})$

Theorem (Equidistant case)

A non-degenerate stationary log-energy configuration of type $\{1, 1, ..., k, \ell\}$, where $1 + 1 + \dots + k + \ell = d + 2$ is a saddle point. Moreover, there is a continuous perturbation that decreases the logarithmic energy of the $\{1, k, \ell\}$ part of the configuration to either $\{k + 1, \ell\}$ or $\{k, \ell + 1\}$. Sequence of such perturbations leads to relative minima as described in Main Theorem.

Equidistant case proof

Proof.

Let
$$X = \{1, k, \ell\}$$
 with $x_N \cdot x_i = -1/(N-1)$. Denote $x_i = (y_i, \frac{-1}{N-1})$, $z_i := (N-1)y_i/\sqrt{N(N-2)}$, $z_i \in \mathbb{S}^{d-2}$ satisfies force equation.

$$Y := \{ (\sqrt{1 - 1/(k + m)^2} y_i, 0_{m-1}, -1/(k + m)) \},\$$

$$Z := \{(0_{k-1}, \sqrt{1 - 1/(k+m)^2 z_j}, -1/(k+m))\}$$

Perturb to

$$\widetilde{Y}_t = \left\{ \left(\sqrt{1 - (mt + 1/(k+m))^2} \, y_i, 0_{m-1}, -1/(k+m) - mt \right) \right\}_{i=1}^k$$
$$\widetilde{Z}_t = \left\{ \left(0_{k-1}, \sqrt{1 - (kt - 1/(k+m))^2} \, z_j, -1/(k+m) + kt \right) \right\}_{j=1}^m.$$

Then $E_h(\widetilde{X}_t)$ has local max at t = 0 and decreases to $\{k, \ell + 1\}$ or $\{k + 1, \ell\}$.

Relative minima case

Theorem (Equidistant case)

Let $X = \{k, \ell\}$ a configuration of two orthogonal simplexes X_k and X_ℓ . Any perturbation will increase the energy locally.

We need two inequalities.

Relative minima case - Inequality 1

Lemma (H1)

Let $A = (a_{ij})$ be an $m \times m$ matrix, $m \ge 3$, such that (a) $a_{ii} = 0$, i = 1, ..., m; (b) $\sum_{j=1}^{m} a_{ij} = 0$. Then the following inequality holds

$$\sum_{1 \le i < j \le m} (a_{ij} + a_{ji})^2 \ge \frac{1}{m-2} \sum_{j=1}^m x_j^2, \quad \text{where} \quad x_j := \sum_{i=1}^m a_{ij}.$$
(8)

Proof of Inequality 1: part 1

For all $i, j = 1, \ldots, m$ define

$$\beta_{ij} := \frac{1}{m^2 - 2m} x_i + \frac{m - 1}{m^2 - 2m} x_j, \quad i \neq j, \text{ and } \beta_{ii} = 0.$$

Since $\sum_{j=1}^{m} x_j = 0$, we have $\sum_{j=1}^{m} \beta_{ij} = 0$ and $\sum_{i=1}^{m} \beta_{ij} = x_j$, i.e.

$$\sum_{j=1}^{m} \beta_{ij} = \sum_{j=1}^{m} a_{ij} \text{ and } \sum_{i=1}^{m} \beta_{ij} = \sum_{i=1}^{m} a_{ij}$$

Let $\widetilde{a}_{ij} := a_{ij} - \beta_{ij}$. Then

$$\sum_{i}\widetilde{a}_{ij}=\sum_{j}\widetilde{a}_{ij}=0.$$

Proof of Inequality 1: part 2

Consider
$$t_{ij} := a_{ij} + a_{ji} = w_{ij} + \beta_{ij} + \beta_{ji}$$
, where $w_{ij} = \tilde{a}_{ij} + \tilde{a}_{ji}$. Then $t_{ij} = w_{ij} + \frac{x_i}{m-2} + \frac{x_j}{m-2}$, $i \neq j$, where $\sum_i w_{ij} = \sum_j w_{ij} = 0$ (observe that $t_{ij} = 0$). Then

$$\sum_{i < j} t_{ij}^2 = \sum_{i < j} \left(w_{ij} + \frac{x_i}{m-2} + \frac{x_j}{m-2} \right)^2 = \sum_{i < j} w_{ij}^2 + \frac{1}{m-2} \sum_{i=1}^m x_i^2,$$

which implies (8).

Relative minima case - Inequality 2

Lemma (H2)

Given an $m \times n$ matrix $F = (f_{ij})$ and an $n \times m$ matrix $G = (g_{ij})$ such that $\sum_{j=1}^{n} f_{ij} = 0$ for all i = 1, ..., m and $\sum_{j=1}^{m} g_{ij} = 0$ for all i = 1, ..., n. Then we have

$$\sum_{i=1}^{n} \sum_{j=1}^{m} (f_{ij} + g_{ji})^2 \ge \frac{1}{m} \sum_{j=1}^{n} y_j^2 + \frac{1}{n} \sum_{i=1}^{m} z_i^2,$$

$$y_j := \sum_{i=1} f_{ij}, \quad z_i := \sum_{j=1} g_{ji},$$

Proof of Inequality 2

Let

$$\widetilde{f}_{ij} := f_{ij} - rac{y_j}{m} \quad ext{and} \quad \widetilde{g}_{ij} := g_{ij} - rac{z_i}{n}.$$

Since $\sum_{j} y_j = \sum_{i} z_i = 0$, we have $\sum_{i,j} (\tilde{f}_{ij} + \tilde{g}_{ji}) = 0$. Let $t_{ij} := \tilde{f}_{ij} + \tilde{g}_{ji}$. Observe that

$$\sum_{i=1}^{m} t_{ij} = \sum_{j=1}^{n} t_{ij} = 0.$$

From

$$f_{ij}+g_{ji}=\frac{y_j}{m}+\frac{z_i}{n}+t_{ij}.$$

one derives that

$$\sum_{i=1}^{m} \sum_{j=1}^{n} (f_{ij} + g_{ji})^2 = \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\frac{y_j}{m} + \frac{z_i}{n} + t_{ij}\right)^2 = \sum_{i=1}^{m} \sum_{j=1}^{n} t_{ij}^2 + \frac{1}{m} \sum_{j=1}^{n} y_j^2 + \frac{1}{n} \sum_{i=1}^{m} z_i^2,$$

which completes the proof.

Relative minima case - Proof (part 1)

Perturb the two orthogonal simplexes ($k + \ell = d + 2$)

$$X_k = \{x_1, x_2, \ldots, x_k\}, \quad X_\ell = \{x_{k+1}, x_{m+2}, \ldots, x_{k+\ell}\},$$

to $Y = Y_k \cup Y_\ell$, where $y_i := x_i + h_i$, $||h_i|| < \epsilon$. Since $||x_i|| = ||y_i|| = 1$, we have $2x_i \cdot h_i = -||h_i||^2$, $1 - y_i \cdot y_j = (1 - x_i \cdot x_j)(1 - z_{i,j})$, where

$$z_{i,j} := \begin{cases} \frac{k-1}{k} (x_i \cdot h_j + x_j \cdot h_i + h_i \cdot h_j), & 1 \le i \ne j \le k \\ x_i \cdot h_j + x_j \cdot h_i + h_i \cdot h_j, & i \le k < j \text{ or } j \le k < i \\ \frac{\ell-1}{\ell} (x_i \cdot h_j + x_j \cdot h_i + h_i \cdot h_j), & k < i \ne j \le k + \ell. \end{cases}$$
(9)

Clearly $|z_{i,j}| < 2\epsilon + O(\epsilon^2)$. We find

$$2[E_{\log}(Y) - E_{\log}(X)] = \sum_{1 \le i \ne j \le k+\ell} \left(z_{i,j} + \frac{z_{i,j}^2}{2} \right) + O(\epsilon^3).$$
(10)

Relative minima case - Proof (part 2)

W.l.g. $x_i = (p_i, 0), h_i = (a_i, b_i), x_{k+j} = (0, q_j), h_{k+j} = (c_j, d_j)$, where $p_i, a_i, c_j \in \mathbb{R}^{k-1}$ and $q_j, b_i, d_j \in \mathbb{R}^{\ell-1}$. Straight-forward calculations show that the linear in ϵ term in (10) vanishes. The quadratic term is

$$D := \sum_{1 \le i \ne j \le k+\ell} \frac{h_i \cdot h_j}{1 - x \cdot x_j} + \frac{1}{2} \sum_{1 \le i \ne j \le k+\ell} \left(\frac{x_i \cdot h_j + x_j \cdot h_i}{1 - x \cdot x_j} \right)^2$$

$$= \left\|\sum_{i=1}^{k+\ell} h_i\right\|^2 - \frac{1}{k} \left(\left\|\sum_{i=1}^k a_i\right\|^2 + \left\|\sum_{i=1}^k b_i\right\|^2\right) - \frac{1}{\ell} \left(\left\|\sum_{j=1}^\ell c_j\right\|^2 + \left\|\sum_{j=1}^\ell d_j\right\|^2\right) + \left(\frac{k-1}{k}\right)^2 \sum_{1 \le i < j \le \ell} (p_i \cdot a_j + p_j \cdot a_i)^2 + \left(\frac{\ell-1}{\ell}\right)^2 \sum_{1 \le i < j \le \ell} (q_i \cdot d_j + q_j \cdot d_i)^2$$
(11)

$$+\sum_{i=1}^k\sum_{j=1}^\ell(p_i\cdot c_j+q_j\cdot b_i)^2.$$

Relative minima case - Proof (part 3)

By extracting another $O(\epsilon^3)$ term we may reduce the condition $2x_i \cdot h_i = -||h_i||^2$ to $x_i \cdot h_i = 0$. Thus, in this case we shall reduce the theorem to proving the inequalities

$$D_{1} := \left(\frac{k-1}{k}\right)^{2} \sum_{1 \le i < j \le k} (p_{i} \cdot a_{j} + p_{j} \cdot a_{i})^{2} - \frac{1}{k} \left\|\sum_{i=1}^{k} a_{i}\right\|^{2} \ge 0 \quad (12)$$

$$D_{2} := \left(\frac{\ell - 1}{\ell}\right)^{2} \sum_{1 \le i < j \le \ell} (q_{i} \cdot d_{j} + q_{j} \cdot d_{i})^{2} - \frac{1}{\ell} \left\|\sum_{j=1}^{\ell} d_{j}\right\|^{2} \ge 0$$
(13)

and

$$D_3 := \sum_{i=1}^k \sum_{j=1}^\ell (p_i \cdot c_j + q_j \cdot b_i)^2 - \frac{1}{k} \|\sum_{i=1}^k b_i\|^2 - \frac{1}{\ell} \|\sum_{j=1}^\ell c_j\|^2 \ge 0 \quad (14)$$

provided $\{p_1, \ldots, p_k\}$ and $\{q_1, \ldots, q_\ell\}$ are orthogonal *k*- and ℓ -simplexes and $p_i \cdot a_i = 0$ and $q_j \cdot d_j = 0$.

Relative minima case - Proof (part 4)

Embed the first simplex $X_k = \{p_1, \ldots, p_k\}$ in the hyperplane of \mathbb{R}^k that is orthogonal to $(1, 1, \ldots, 1)$. Similarly, we embed the second simplex $X_\ell = \{q_1, \ldots, q_\ell\}$ in \mathbb{R}^ℓ . Thus, we embed $X_k \cup X_\ell \subset \mathbb{R}^k \times \mathbb{R}^\ell$.

Let $w_k = (\frac{1}{k}, \frac{1}{k}, \dots, \frac{1}{k}) \in \mathbb{R}^k$, $\tilde{p}_i := e_i - w_k$, so $p_i = \sqrt{\frac{k}{k-1}} \tilde{p}_i$. Similarly, if $\tilde{q}_j := e_j - w_\ell$, then $q_j = \sqrt{\frac{\ell}{\ell-1}} \tilde{q}_j$.

For the perturbation vectors a_i , b_i , c_j , d_j , we have

$$\sum_{j=1}^{k} a_{ij} = 0, \quad \sum_{j=1}^{\ell} b_{ij} = 0, \quad \sum_{j=1}^{k} c_{ij} = 0, \quad \sum_{j=1}^{\ell} d_{ij} = 0.$$

 $p_i \cdot a_i = 0 \Rightarrow a_{ii} = 0, q_j \cdot d_j = 0 \Rightarrow a_{ii} = 0$. Using $\widetilde{p}_i \cdot a_j = a_{ji}$ (12) is

$$\sum_{1 \leq i < j \leq k} (a_{ij} + a_{ji})^2 \geq \frac{1}{k-1} \sum_{j=1}^k \left(\sum_{i=1}^k a_{ij} \right)^2$$

which follows from Lemma (H1). Similarly one gets (13).

Relative minima case - Proof (part 5)

Equality in (12) and (13) holds iff $a_{ij} + a_{ji} = 0$ and $d_{ij} + d_{ji} = 0$ respectively, which is equivalent to

$$p_i \cdot a_j + p_j \cdot a_i = 0, q_j \cdot d_i + q_i \cdot d_j = 0, \sum a_i = 0, \sum d_j = 0.$$

Lemma (H2) is used to derive the inequality (14). We have that

$$p_i \cdot c_j + q_j \cdot b_i = \sqrt{rac{k}{k-1}} c_{ji} + \sqrt{rac{\ell}{\ell-1}} b_{ij}$$

with the substitution $f_{ij} = \sqrt{\frac{\ell}{\ell-1}} b_{ij}$ and $g_{ji} = \sqrt{\frac{k}{k-1}} c_{ji}$ we re-write (14) as

$$\sum_{i=1}^{\ell} \sum_{j=1}^{k} (f_{ij} + g_{ij})^2 \geq \frac{1}{k} \frac{\ell - 1}{\ell} \sum_{j=1}^{\ell} y_j^2 + \frac{1}{\ell} \frac{k - 1}{k} \sum_{i=1}^{k} z_i^2,$$

which clearly follows from Lemma (H2). Moreover, equality occurs if and only if $p_i \cdot c_j + q_j \cdot b_i = 0$, $\sum c_i = 0$, and $\sum b_j = 0$.

Relative minima case - Proof (part 6)

So, the quadratic in ϵ term D > 0, or $E_{log}(Y) - E_{log}(X) > 0$, for any perturbation vectors $\{a_i, b_i, c_i, d_i\}$ $(p_i \cdot a_i = 0, q_j \cdot d_j = 0)$, except when

$$p_i \cdot a_j + p_j \cdot a_i = 0, \quad q_j \cdot d_i + q_i \cdot d_j = 0, \quad p_i \cdot c_j + q_j \cdot b_i = 0,$$

$$\sum_{i=1}^{k} a_i = 0, \quad \sum_{i=1}^{k} b_i = 0, \sum_{j=1}^{\ell} c_j = 0, \quad \sum_{j=1}^{\ell} d_j = 0.$$

Utilizing (9) and these conditions, one simplifies (10) to

$$2\left[E_{\log}(Y) - E_{\log}(X)\right] = \frac{(k-1)^2}{2k^2} \sum_{1 \le i \ne j \le k} (a_i \cdot a_j)^2 + \frac{(\ell-1)^2}{2\ell^2} \sum_{1 \le i \ne j \le \ell} (d_i \cdot d_j)^2 \\ + \sum_{i=1}^k \sum_{j=1}^{\ell} (b_i \cdot c_j)^2 + O(\epsilon^5).$$

Clearly, the quartic term will be positive, unless all inner products vanish, in which case we easily derive that $a_i = c_j = 0$ and $b_i = d_j = 0$ for all i = 1, ..., k and $j = 1, ..., \ell$. This completes the proof.

THANK YOU!