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Optimal s-energy and Log-optimal codes

Thomson Problem (1904) -
(“plum pudding” model of an atom)

Find the (most) stable (ground state) energy
configuration (code) of N classical electrons
(Coulomb law) constrained to move on the
sphere S2.

Generalized Thomson Problem (1/r s potentials and log(1/r))

A code C := {x1, . . . ,xN} ⊂ S2 that minimizes Riesz s-energy

Es(C) :=
∑
j 6=k

1
|xj − xk |s

, s > 0, Elog(ωN) :=
∑
j 6=k

log
1

|xj − xk |

is called an optimal s-energy code (log-optimal for s = 0)
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Optimal s-energy codes on S2

Known optimal s-energy codes on S2

• s = log, Whyte’s problem (1952, Monthly) (N = 2− 6, 12);
• s = 1, Thomson Problem (known for N = 2− 6, 12)
• s = −1, Fejes-Toth Problem (known for N = 2− 6, 12)
• s →∞, Tammes Problem (known for N = 1− 12, 13,14, 24)

Limiting case - Best packing

For fixed N, any limit as s →∞ of optimal s-energy codes is an
optimal (maximal) code.

Universally optimal codes

The codes with cardinality N = 2,3,4,6,12 are special (sharp codes)
and minimize large class of potential energies. First "non-sharp" is
N = 5 and very little is rigorously proven.
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Optimal five point log and Riesz s-energy code on S2

(a) (b) (c)

Figure: ‘Optimal’ 5-point codes on S2: (a) bipyramid BP, (b) optimal
square-base pyramid SBP (s = 1) , (c) ‘optimal’ SBP (s = 16).

• s = 0: P. Dragnev, D. Legg, and D. Townsend, (2002)
(referred to by Ed Saff as “Mastodon” theorem);

• s = −1: X. Hou, J. Shao, (2011), computer-aided proof;
• s = 1, 2: R. E. Schwartz (2013), computer-aided proof;
• Bondarenko-Hardin-Saff (2014), As s →∞, any optimal s-energy codes

of 5 limit is a square pyramid with base in the Equator;
• 0 < s < 15.04..: R. E. Schwartz (2018).
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Optimal five point log and Riesz s-energy code on S2

(a) (b) (c)

Figure: ‘Optimal’ 5-point code on S2: (a) bipyramid BP, (b) optimal
square-base pyramid SBP (s = 1) , (c) ‘optimal’ SBP (s = 16).

Melnik et.el. 1977 s∗ = 15.04 . . . ?

Figure: 5 points energy ratio
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“Mastodon” Theorem on S3 and S4 (Dragnev - 2016)

Definition
Two vertices xi and xj are called mirror related (we write xi ∼ xj ), if
|xi − xk | = |xj − xk |, for every k 6= i , j .

Theorem (Characterization of (d + 3) Log-stationary configurations)

A log-stationary configuration is either (a) degenerate; (b) there exists
a vertex with all edges stemming out being equal; or (c) every vertex
is mirror related to another vertex.

Remark
Mirror relation is equivalence relation and an equivalence class forms
a regular simplex in the spanning affine hyperspace.

Theorem (Dragnev - 2016)

The (d + 3)-Log-optimal configuration in S1, S2, S3, S4, is two
orthogonal simplexes of type {2,2}, {2,3}, {3,3}, {3,4} respectively.
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“Mastodon” Theorem on Sd−1 (Musin, D. - 2020)

Theorem (Main Theorem 1)

Up to orthogonal transform, every relative minimum of the logarithmic
energy Elog(X ) of d + 2 points on Sd−1 consists of two regular
simplexes of cardinality m ≥ n > 1, m + n = d + 2, such that these
simplexes are orthogonal to each other. The global minimum occurs
when m = n if d is even and m = n + 1 otherwise.

Remark
The only two other classes of minimal energy configurations are the
regular simplex (d + 1 points on Sd−1) and the regular cross polytope
(2d points on Sd−1), both of which are universally optimal.
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Stationary Configurations of d + 2 points on Sd−1

Definition
A point configuration is called degenerate if it is contained in an
affine hyperplane. (Ex. Pentagon on S2)

Theorem (Non-degenerate, non-equidistant case)

Let N = d + 2 and X = {x1, . . . , xN} be a non-degenerate stationary
logarithmic configuration on Sd−1. Suppose there is no point x ∈ X
that is equidistant to all other points in X. Then X can be split into two
sets such that these sets are vertices of two regular orthogonal
simplexes with the centers of mass in the center of Sd−1.

Remark
Strengthens 2016 Characterization theorem significantly.
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Stationary Configurations of d + 2 points on Sd−1

Given potential interaction function h : [−1,1]→ R h-energy is

Eh(X ) :=
∑

1≤i 6=j≤N

h(xi · xj).

Theorem (Degenerate Case - h-energy)

Let X be any degenerate configuration, N ≥ d + 2, and
h : [−1,1]→ R be a strictly convex potential function. Then there
exists a continuous perturbation that decreases the h-energy Eh(X ).

Theorem (Equidistant case)

A non-degenerate stationary log-energy configuration of type
{1,1, . . . , k , l}, where 1 + 1 + · · ·+ k + l = d + 2 is a saddle point.
Moreover, there is a continuous perturbation that decreases the
logarithmic energy of the {1, k , l} part of the configuration to either
{k + 1, l} or {k , l + 1}. Sequence of such perturbations leads to
relative minima as described in Main Theorem.
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Auxiliary Results

Using Lagrange Multipliers method to logarithmic energy

ELog(X ) := −1
2

∑
1≤i 6=j≤N

log(xi · xi − 2xi · xj + xj · xj),

and differentiating yields∑
j 6=i

xi − xj

ri,j
= λixi i = 1, . . . ,N, where rij := 1− xi · xj .

Taking inner product of both sides with xi one obtains λi = N − 1, or∑
j 6=i

xi − xj

ri,j
= (N − 1) xi , i = 1, . . . ,N. (1)

Summing (1) implies that the centroid lies at the origin, and hence∑
j

rij = N, i = 1, . . . ,N. (2)
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Auxiliary Results - Rank Lemma

Let
B = (bij) , bij :=

1
rij
, bii := N − 1−

∑
j 6=i

bij ,

A = (aij) , where aij := c − bij , c :=
N − 1

N
.

Lemma

Let X = {x1, . . . , xN} be a stationary logarithmic configuration on Sd−1

that is non-degenerate. Then

rank(A) ≤ N − d − 1,
N∑

j=1

aij = 0, i = 1, . . . ,N.

If N = d + 2, then rank(A) = 1.
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Proof of the Rank Lemma

Let X := [x1, . . . , xN ]
T . The force equations (1) and (2) imply that

N∑
j=1

bijxj = 0,
N∑

j=1

bij = N − 1.

In other words, BX = 0 and B1 = (N − 1)1, where 1 denotes the
N-dimensional column-vector of ones.

As X is non-degenerate, we have rank X = d . Therefore, the
column-vectors of X are linearly independent.

Since 1 is eigenvector of B with an eigenvalue of N − 1, it is linearly
independent to the columns of X (eigenvectors with eigenvalue 0).

The lemma follows from the rank-nullity theorem applied to
A[X,1] = 0.

�
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Auxiliary Results - N = d + 2

The following lemma elaborates on the case when N = d + 2.

Lemma

Let N = d + 2 and X = {x1, . . . , xN} be a non-degenerate stationary
logarithmic configuration on Sd−1. Without loss of generality we may
assume that a1i ≥ 0 for i = 1, . . . k and a1i < 0 for i = k + 1, . . .N. Let

ai =
√

aii , i = 1, . . . k ; ai = −
√

aii , i = k + 1, . . .N.

Then
aij = ai aj , a1 + . . .+ aN = 0,

c − aiaj ≥
1
2
, for all i 6= j ,∑

j 6=i

1
c − aiaj

= N, i = 1, . . . ,N. (3)
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Auxiliary Results - Supplemental Theorem

If ai = 0 then the i-th row and i-th column in A are zero xi is
equidistant to all other points xj . So, ai 6= 0 for all i = 1, . . . ,N.

Theorem (Supplemental)

Let a1, . . . ,aN be real numbers that satisfy the following assumptions

a1 ≥ . . . ≥ ak > 0 > ak+1 ≥ . . . ≥ aN , a1 + . . . ,+aN = 0,∑
j 6=i

1
c − aiaj

= N, i = 1, . . . ,N, c − aiaj > 0, for all i 6= j ,

where c := N−1
N . Then

a1 = ... = ak , ak+1 = ... = aN .
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Auxiliary Results - Technical Lemma

Lemma (Technical)

Suppose a1, . . . ,aN are as in Supplemental Theorem. Then for all
i = 1, . . . ,N we have

Ti :=
∑
j 6=i

c − a2
j

c − aiaj
= N − 2. (4)

and
|ai | <

√
c, i = 1, ...,N. (5)



Peter Dragnev and Oleg Musin

Proof of the Technical Lemma - Eq. (4)

Denote

Qi :=
∑
j 6=i

1
c − aiaj

, Ri :=
∑
j 6=i

aj

c − aiaj
, Si :=

∑
j 6=i

a2
j − ajai

c − aiaj
.

By the assumption Qi = N for all i , we get (recall ai 6= 0)

N − 1 =
∑
j 6=i

c − aiaj

c − aiaj
= c Qi − aiRi = N − 1− aiRi ,

or Ri = 0. Along with ai = −(a1 + ...+ ai−1 + ai+1 + ...aN)

ai = (c − a2
i )
∑
j 6=i

aj

c − aiaj
−
∑
j 6=i

aj = ai

∑
j 6=i

a2
j − ajai

c − aiaj
= aiSi ,

or Si = 1 and subsequently

N − 2 =
∑
j 6=i

c − aiaj

c − aiaj
− Si =

∑
j 6=i

c − a2
j

c − aiaj
= Ti
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Proof of the Technical Lemma - Ineq. (5)

W.l.g. |a1| ≥ |ai |. From Si = 1 we have

1 =
∑
j 6=i

a2
j − aiaj

c − aiaj
=

a2
1 − aia1

c − aia1
+
∑

2≤j 6=i

a2
j − aiaj

c − aiaj
.

Then ∑
2≤j 6=i

a2
j − aiaj

c − aiaj
=

c − a2
1

c − aia1
, i = 2, . . . ,N.

Therefore,
N∑

i=2

∑
2≤j 6=i

a2
j − aiaj

c − aiaj
=

N∑
i>j=2

(ai − aj)
2

c − aiaj
= (c−a2

1)
N∑

i=2

1
c − aia1

= (c−a2
1)Q1.

Since Q1 = N and by the assumption c − aiaj > 0, we have

c − a2
1 =

1
N

N∑
i>j=2

(ai − aj)
2

c − aiaj
> 0. (6)

Thus, (6) implies c − a2
i > 0. �
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Proof of Supplemental Theorem

Let

F (t) :=
N∑

j=1

c − a2
j

c − taj
.

Then Technical Lemma implies that for all i = 1, . . . ,N

F (ai) = N − 1. (7)

Since

F ′′(t) = 2
∑

j

(
c − a2

j

)
a2

j

(c − taj)3 ,

by Technical Lemma again we have F ′′(t) > 0 for t ∈ (−
√

c,
√

c).
Hence F (t) is a convex function in this interval. Therefore, the
equation F (t) = N − 1 has at most two solutions. By assumptions we
have ai > 0 for i = 1, . . . , k and ai < 0, for i = k + 1, . . . ,N. Thus, (7)
yields that all positive ai are equal and all negative ai are equal too. �
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Proofs of Degenerate, Equidistant, and Relative
Minima cases

Even more complex and involved :-(
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Degenerate case - h-energy

Theorem (Degenerate Case)

Let X be a degenerate configuration, N ≥ d + 2, and h : [−1,1]→ R
be a strictly convex potential function. Then there exists a continuous
perturbation that decreases the h-energy Eh(X ).

Proof.

x1 = (r ,
√

1− r2,0, . . . ,0), x2 = (r ,−
√

1− r2,0, . . . ,0)

xj = (cj1, cj2, cj3, . . . ,0), j = 3, . . . ,N,

where c32 6= 0. Preturb to X̃

x̃1 = (r ,
√

1− r2 cos θ,0, . . . ,
√

1− r2 sin θ),

x̃2 = (r ,−
√

1− r2 cos θ,0, . . . ,−
√

1− r2 sin θ).

Then Eh(X ) > Eh(X̃ )
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Equidistant case

Theorem (Equidistant case)

A non-degenerate stationary log-energy configuration of type
{1,1, . . . , k , `}, where 1 + 1 + · · ·+ k + ` = d + 2 is a saddle point.
Moreover, there is a continuous perturbation that decreases the
logarithmic energy of the {1, k , `} part of the configuration to either
{k + 1, `} or {k , `+ 1}. Sequence of such perturbations leads to
relative minima as described in Main Theorem.
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Equidistant case proof

Proof.

Let X = {1, k , `} with xN · xi = −1/(N − 1). Denote xi = (yi ,
−1

N−1 ),
zi := (N − 1)yi/

√
N(N − 2), zi ∈ Sd−2 satisfies force equation.

Y := {(
√

1− 1/(k + m)2 yi ,0m−1,−1/(k + m))},

Z := {(0k−1,
√

1− 1/(k + m)2 zj ,−1/(k + m))}

Perturb to

Ỹt =

{(√
1− (mt + 1/(k + m))2 yi ,0m−1,−1/(k + m)−mt

)}k

i=1

Z̃t =

{(
0k−1,

√
1− (kt − 1/(k + m))2 zj ,−1/(k + m) + kt

)}m

j=1
.

Then Eh(X̃t) has local max at t = 0 and decreases to {k , `+ 1} or
{k + 1, `}.
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Relative minima case

Theorem (Equidistant case)

Let X = {k , `} a configuration of two orthogonal simplexes Xk and X`.
Any perturbation will increase the energy locally.

We need two inequalities.
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Relative minima case - Inequality 1

Lemma (H1)

Let A = (aij) be an m ×m matrix, m ≥ 3, such that
(a) aii = 0, i = 1, . . . ,m;
(b)
∑m

j=1 aij = 0.
Then the following inequality holds

∑
1≤i<j≤m

(aij + aji)
2 ≥ 1

m − 2

m∑
j=1

x2
j , where xj :=

m∑
i=1

aij . (8)
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Proof of Inequality 1: part 1

For all i , j = 1, . . . ,m define

βij :=
1

m2 − 2m
xi +

m − 1
m2 − 2m

xj , i 6= j , and βii = 0.

Since
∑m

j=1 xj = 0, we have
∑m

j=1 βij = 0 and
∑m

i=1 βij = xj , i.e.

m∑
j=1

βij =
m∑

j=1

aij and
m∑

i=1

βij =
m∑

i=1

aij .

Let ãij := aij − βij . Then ∑
i

ãij =
∑

j

ãij = 0.
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Proof of Inequality 1: part 2

Consider tij := aij + aji = wij + βij + βji , where wij = ãij + ãji . Then
tij = wij +

xi
m−2 +

xj
m−2 , i 6= j , where

∑
i wij =

∑
j wij = 0 (observe that

tii = 0). Then

∑
i<j

t2
ij =

∑
i<j

(
wij +

xi

m − 2
+

xj

m − 2

)2

=
∑
i<j

w2
ij +

1
m − 2

m∑
i=1

x2
i ,

which implies (8).
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Relative minima case - Inequality 2

Lemma (H2)

Given an m × n matrix F = (fij) and an n ×m matrix G = (gij) such
that

∑n
j=1 fij = 0 for all i = 1, . . . ,m and

∑m
j=1 gij = 0 for all

i = 1, . . . ,n. Then we have

n∑
i=1

m∑
j=1

(fij + gji)
2 ≥ 1

m

n∑
j=1

y2
j +

1
n

m∑
i=1

z2
i ,

yj :=
m∑

i=1

fij , zi :=
n∑

j=1

gji .
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Proof of Inequality 2

Let
f̃ij := fij −

yj

m
and g̃ij := gij −

zi

n
.

Since
∑

j yj =
∑

i zi = 0, we have
∑

i,j (̃fij + g̃ji) = 0. Let tij := f̃ij + g̃ji .
Observe that

m∑
i=1

tij =
n∑

j=1

tij = 0.

From
fij + gji =

yj

m
+

zi

n
+ tij .

one derives that

m∑
i=1

n∑
j=1

(fij+gji)
2 =

m∑
i=1

n∑
j=1

( yj

m
+

zi

n
+ tij

)2
=

m∑
i=1

n∑
j=1

t2
ij +

1
m

n∑
j=1

y2
j +

1
n

m∑
i=1

z2
i ,

which completes the proof.



Peter Dragnev and Oleg Musin

Relative minima case - Proof (part 1)

Perturb the two orthogonal simplexes (k + ` = d + 2)

Xk = {x1, x2, . . . , xk}, X` = {xk+1, xm+2, . . . , xk+`},

to Y = Yk ∪ Y`, where yi := xi + hi , ‖hi‖ < ε. Since ‖xi‖ = ‖yi‖ = 1,
we have 2xi · hi = −‖hi‖2, 1− yi · yj = (1− xi · xj)(1− zi,j), where

zi,j :=



k − 1
k

(xi · hj + xj · hi + hi · hj), 1 ≤ i 6= j ≤ k

xi · hj + xj · hi + hi · hj , i ≤ k < j or j ≤ k < i

`− 1
`

(xi · hj + xj · hi + hi · hj), k < i 6= j ≤ k + `.

(9)

Clearly |zi,j | < 2ε+ O(ε2). We find

2 [Elog(Y )− Elog(X )] =
∑

1≤i 6=j≤k+`

(
zi,j +

z2
i,j

2

)
+ O(ε3). (10)
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Relative minima case - Proof (part 2)

W.l.g. xi = (pi ,0), hi = (ai ,bi), xk+j = (0,qj), hk+j = (cj ,dj), where
pi ,ai , cj ∈ Rk−1 and qj ,bi ,dj ∈ R`−1. Straight-forward calculations
show that the linear in ε term in (10) vanishes. The quadratic term is

D :=
∑

1≤i 6=j≤k+`

hi · hj

1− x·xj
+

1
2

∑
1≤i 6=j≤k+`

(
xi · hj + xj · hi

1− x·xj

)2

=
∥∥∥ k+∑̀

i=1

hi

∥∥∥2
− 1

k

(∥∥∥ k∑
i=1

ai

∥∥∥2
+
∥∥∥ k∑

i=1

bi

∥∥∥2
)
− 1
`

∥∥∥∑̀
j=1

cj

∥∥∥2
+
∥∥∥∑̀

j=1

dj

∥∥∥2


+

(
k − 1

k

)2 ∑
1≤i<j≤k

(pi · aj + pj · ai)
2 +

(
`− 1
`

)2 ∑
1≤i<j≤`

(qi · dj + qj · di)
2

(11)

+
k∑

i=1

∑̀
j=1

(pi · cj + qj · bi)
2.
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Relative minima case - Proof (part 3)

By extracting another O(ε3) term we may reduce the condition
2xi · hi = −‖hi‖2 to xi · hi = 0.
Thus, in this case we shall reduce the theorem to proving the
inequalities

D1 :=

(
k − 1

k

)2 ∑
1≤i<j≤k

(pi · aj + pj · ai)
2 − 1

k

∥∥∥ k∑
i=1

ai

∥∥∥2
≥ 0 (12)

D2 :=

(
`− 1
`

)2 ∑
1≤i<j≤`

(qi · dj + qj · di)
2 − 1

`

∥∥∥∑̀
j=1

dj

∥∥∥2
≥ 0 (13)

and

D3 :=
k∑

i=1

∑̀
j=1

(pi · cj + qj · bi)
2 − 1

k
‖

k∑
i=1

bi‖2 − 1
`

∥∥∥∑̀
j=1

cj

∥∥∥2
≥ 0 (14)

provided {p1, . . . ,pk} and {q1, . . . ,q`} are orthogonal k - and
`-simplexes and pi · ai = 0 and qj · dj = 0.
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Relative minima case - Proof (part 4)

Embed the first simplex Xk = {p1, . . . ,pk} in the hyperplane of Rk that
is orthogonal to (1,1, . . . ,1). Similarly, we embed the second simplex
X` = {q1, . . . ,q`} in R`. Thus, we embed Xk ∪ X` ⊂ Rk × R`.

Let wk = ( 1
k ,

1
k , . . . ,

1
k ) ∈ Rk , p̃i := ei − wk , so pi =

√
k

k−1 p̃i . Similarly,

if q̃j := ej − w`, then qj =
√

`
`−1 q̃j .

For the perturbation vectors ai , bi , cj , dj , we have

k∑
j=1

aij = 0,
∑̀
j=1

bij = 0,
k∑

j=1

cij = 0,
∑̀
j=1

dij = 0.

pi · ai = 0⇒ aii = 0, qj · dj = 0⇒ aii = 0. Using p̃i · aj = aji (12) is

∑
1≤i<j≤k

(aij + aji)
2 ≥ 1

k − 1

k∑
j=1

(
k∑

i=1

aij

)2

,

which follows from Lemma (H1). Similarly one gets (13).
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Relative minima case - Proof (part 5)

Equality in (12) and (13) holds iff aij + aji = 0 and dij + dji = 0
respectively, which is equivalent to

pi · aj + pj · ai = 0,qj · di + qi · dj = 0,
∑

ai = 0,
∑

dj = 0.

Lemma (H2) is used to derive the inequality (14). We have that

pi · cj + qj · bi =

√
k

k − 1
cji +

√
`

`− 1
bij

with the substitution fij =
√

`
`−1 bij and gji =

√
k

k−1 cji we re-write (14)
as ∑̀

i=1

k∑
j=1

(fij + gij)
2 ≥ 1

k
`− 1
`

∑̀
j=1

y2
j +

1
`

k − 1
k

k∑
i=1

z2
i ,

which clearly follows from Lemma (H2). Moreover, equality occurs if
and only if pi · cj + qj · bi = 0,

∑
ci = 0, and

∑
bj = 0.
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So, the quadratic in ε term D > 0, or Elog(Y )− Elog(X ) > 0, for any
perturbation vectors {ai ,bi , ci ,di} (pi · ai = 0, qj · dj = 0), except when

pi · aj + pj · ai = 0, qj · di + qi · dj = 0, pi · cj + qj · bi = 0,

k∑
i=1

ai = 0,
k∑

i=1

bi = 0,
∑̀
j=1

ci = 0,
∑̀
j=1

dj = 0.

Utilizing (9) and these conditions, one simplifies (10) to

2 [Elog(Y )− Elog(X )] =
(k − 1)2

2k2

∑
1≤i 6=j≤k

(ai · aj)
2 +

(`− 1)2

2`2

∑
1≤i 6=j≤`

(di · dj)
2

+
k∑

i=1

∑̀
j=1

(bi · cj)
2 + O(ε5).

Clearly, the quartic term will be positive, unless all inner products
vanish, in which case we easily derive that ai = cj = 0 and bi = dj = 0
for all i = 1, . . . , k and j = 1, . . . , `. This completes the proof. �
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THANK YOU!


