Mastodon Theorem - 20 Years in the Making

P. D. Dragnev - Purdue University Fort Wayne (PFW)

Combinatorics and Geometry Days III - MIPT, December 4, 2020

*Jointly with Oleg Musin

Optimal s-energy and Log-optimal codes

Thomson Problem (1904) -
 ("plum pudding" model of an atom)

Find the (most) stable (ground state) energy configuration (code) of N classical electrons (Coulomb law) constrained to move on the sphere \mathbb{S}^{2}.

Generalized Thomson Problem ($1 / r^{s}$ potentials and $\log (1 / r)$)
A code $C:=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\} \subset \mathbb{S}^{2}$ that minimizes Riesz s-energy

$$
E_{s}(C):=\sum_{j \neq k} \frac{1}{\left|\mathbf{x}_{j}-\mathbf{x}_{k}\right|^{s}}, \quad s>0, \quad E_{\log }\left(\omega_{N}\right):=\sum_{j \neq k} \log \frac{1}{\left|\mathbf{x}_{j}-\mathbf{x}_{k}\right|}
$$

is called an optimal s-energy code (log-optimal for $s=0$)

Optimal s-energy codes on \mathbb{S}^{2}

Known optimal s-energy codes on \mathbb{S}^{2}

- $s=\log$, Whyte's problem (1952, Monthly) ($N=2-6,12$);
- $s=1$, Thomson Problem (known for $N=2-6,12$)
- $s=-1$, Fejes-Toth Problem (known for $N=2-6,12$)
- $s \rightarrow \infty$, Tammes Problem (known for $N=1-12,13,14,24$)

Limiting case - Best packing

For fixed N, any limit as $s \rightarrow \infty$ of optimal s-energy codes is an optimal (maximal) code.

Universally optimal codes

The codes with cardinality $N=2,3,4,6,12$ are special (sharp codes) and minimize large class of potential energies. First "non-sharp" is $N=5$ and very little is rigorously proven.

Optimal five point log and Riesz s-energy code on \mathbb{S}^{2}

(a)

(b)

(c)

Figure: 'Optimal' 5 -point codes on \mathbb{S}^{2} : (a) bipyramid BP, (b) optimal square-base pyramid SBP $(s=1)$, (c) 'optimal' SBP $(s=16)$.

- $s=0$: P. Dragnev, D. Legg, and D. Townsend, (2002) (referred to by Ed Saff as "Mastodon" theorem);
- $s=-1$: X. Hou, J. Shao, (2011), computer-aided proof;
- $s=1,2$: R. E. Schwartz (2013), computer-aided proof;
- Bondarenko-Hardin-Saff (2014), As $s \rightarrow \infty$, any optimal s-energy codes of 5 limit is a square pyramid with base in the Equator;
- $0<s<15.04$..: R. E. Schwartz (2018).

Optimal five point log and Riesz s-energy code on \mathbb{S}^{2}

(a)

(b)

(c)

Figure: ‘Optimal' 5-point code on \mathbb{S}^{2} : (a) bipyramid BP, (b) optimal square-base pyramid SBP $(s=1)$, (c) 'optimal' SBP $(s=16)$.

Figure: 5 points energy ratio

"Mastodon" Theorem on \mathbb{S}^{3} and \mathbb{S}^{4} (Dragnev - 2016)

Definition

Two vertices \mathbf{x}_{i} and \mathbf{x}_{j} are called mirror related (we write $\mathbf{x}_{i} \sim \mathbf{x}_{j}$), if $\left|\mathbf{x}_{i}-\mathbf{x}_{k}\right|=\left|\mathbf{x}_{j}-\mathbf{x}_{k}\right|$, for every $k \neq i, j$.

Theorem (Characterization of $(d+3)$ Log-stationary configurations)

A log-stationary configuration is either (a) degenerate; (b) there exists a vertex with all edges stemming out being equal; or (c) every vertex is mirror related to another vertex.

Remark

Mirror relation is equivalence relation and an equivalence class forms a regular simplex in the spanning affine hyperspace.

Theorem (Dragnev - 2016)

The $(d+3)$-Log-optimal configuration in $\mathbb{S}^{1}, \mathbb{S}^{2}, \mathbb{S}^{3}, \mathbb{S}^{4}$, is two orthogonal simplexes of type $\{2,2\},\{2,3\},\{3,3\},\{3,4\}$ respectively.

"Mastodon" Theorem on \mathbb{S}^{d-1} (Musin, D. - 2020)

Theorem (Main Theorem 1)

Up to orthogonal transform, every relative minimum of the logarithmic energy $E_{\log }(X)$ of $d+2$ points on \mathbb{S}^{d-1} consists of two regular simplexes of cardinality $m \geq n>1, m+n=d+2$, such that these simplexes are orthogonal to each other. The global minimum occurs when $m=n$ if d is even and $m=n+1$ otherwise.

"Mastodon" Theorem on \mathbb{S}^{d-1} (Musin, D. - 2020)

Theorem (Main Theorem 1)

Up to orthogonal transform, every relative minimum of the logarithmic energy $E_{\log }(X)$ of $d+2$ points on \mathbb{S}^{d-1} consists of two regular simplexes of cardinality $m \geq n>1, m+n=d+2$, such that these simplexes are orthogonal to each other. The global minimum occurs when $m=n$ if d is even and $m=n+1$ otherwise.

Remark

The only two other classes of minimal energy configurations are the regular simplex $\left(d+1\right.$ points on $\left.\mathbb{S}^{d-1}\right)$ and the regular cross polytope ($2 d$ points on \mathbb{S}^{d-1}), both of which are universally optimal.

Stationary Configurations of $d+2$ points on \mathbb{S}^{d-1}

Definition

A point configuration is called degenerate if it is contained in an affine hyperplane. (Ex. Pentagon on \mathbb{S}^{2})

Theorem (Non-degenerate, non-equidistant case)

Let $N=d+2$ and $X=\left\{x_{1}, \ldots, x_{N}\right\}$ be a non-degenerate stationary logarithmic configuration on \mathbb{S}^{d-1}. Suppose there is no point $x \in X$ that is equidistant to all other points in X. Then X can be split into two sets such that these sets are vertices of two regular orthogonal simplexes with the centers of mass in the center of \mathbb{S}^{d-1}.

Remark

Strengthens 2016 Characterization theorem significantly.

Stationary Configurations of $d+2$ points on \mathbb{S}^{d-1}

Given potential interaction function $h:[-1,1] \rightarrow \overline{\mathbb{R}} h$-energy is

$$
E_{h}(X):=\sum_{1 \leq i \neq j \leq N} h\left(x_{i} \cdot x_{j}\right) .
$$

Theorem (Degenerate Case - h-energy)

Let X be any degenerate configuration, $N \geq d+2$, and $h:[-1,1] \rightarrow \mathbb{R}$ be a strictly convex potential function. Then there exists a continuous perturbation that decreases the h-energy $E_{h}(X)$.

Theorem (Equidistant case)

A non-degenerate stationary log-energy configuration of type $\{1,1, \ldots, k, I\}$, where $1+1+\cdots+k+I=d+2$ is a saddle point. Moreover, there is a continuous perturbation that decreases the logarithmic energy of the $\{1, k, l\}$ part of the configuration to either $\{k+1, l\}$ or $\{k, I+1\}$. Sequence of such perturbations leads to relative minima as described in Main Theorem.

Auxiliary Results

Using Lagrange Multipliers method to logarithmic energy

$$
E_{L o g}(X):=-\frac{1}{2} \sum_{1 \leq i \neq j \leq N} \log \left(x_{i} \cdot x_{i}-2 x_{i} \cdot x_{j}+x_{j} \cdot x_{j}\right),
$$

and differentiating yields

$$
\sum_{j \neq i} \frac{x_{i}-x_{j}}{r_{i, j}}=\lambda_{i} x_{i} \quad i=1, \ldots, N, \text { where } r_{i j}:=1-x_{i} \cdot x_{j} .
$$

Taking inner product of both sides with x_{i} one obtains $\lambda_{i}=N-1$, or

$$
\begin{equation*}
\sum_{j \neq i} \frac{x_{i}-x_{j}}{r_{i, j}}=(N-1) x_{i}, \quad i=1, \ldots, N . \tag{1}
\end{equation*}
$$

Summing (1) implies that the centroid lies at the origin, and hence

$$
\begin{equation*}
\sum_{j} r_{i j}=N, \quad i=1, \ldots, N \tag{2}
\end{equation*}
$$

Auxiliary Results - Rank Lemma

Let

$$
\begin{aligned}
& B=\left(b_{i j}\right), \quad b_{i j}:=\frac{1}{r_{i j}}, \quad b_{i i}:=N-1-\sum_{j \neq i} b_{i j}, \\
& A=\left(a_{i j}\right), \text { where } a_{i j}:=c-b_{i j}, \quad c:=\frac{N-1}{N} .
\end{aligned}
$$

Lemma

Let $\mathrm{X}=\left\{x_{1}, \ldots, x_{N}\right\}$ be a stationary logarithmic configuration on \mathbb{S}^{d-1} that is non-degenerate. Then

$$
\operatorname{rank}(A) \leq N-d-1, \quad \sum_{j=1}^{N} a_{i j}=0, \quad i=1, \ldots, N
$$

If $N=d+2$, then $\operatorname{rank}(A)=1$.

Proof of the Rank Lemma

Let $\mathrm{X}:=\left[x_{1}, \ldots, x_{N}\right]^{T}$. The force equations (1) and (2) imply that

$$
\sum_{j=1}^{N} b_{i j} x_{j}=0, \quad \sum_{j=1}^{N} b_{i j}=N-1 .
$$

In other words, $B X=0$ and $B 1=(N-1) \mathbf{1}$, where 1 denotes the N-dimensional column-vector of ones.

As X is non-degenerate, we have rank $\mathrm{X}=d$. Therefore, the column-vectors of X are linearly independent.

Since 1 is eigenvector of B with an eigenvalue of $N-1$, it is linearly independent to the columns of X (eigenvectors with eigenvalue 0).

The lemma follows from the rank-nullity theorem applied to $A[\mathrm{X}, \mathbf{1}]=0$.

Auxiliary Results - $N=d+2$

The following lemma elaborates on the case when $N=d+2$.

Lemma

Let $N=d+2$ and $X=\left\{x_{1}, \ldots, x_{N}\right\}$ be a non-degenerate stationary logarithmic configuration on \mathbb{S}^{d-1}. Without loss of generality we may assume that $a_{1 i} \geq 0$ for $i=1, \ldots k$ and $a_{1 i}<0$ for $i=k+1, \ldots N$. Let

$$
a_{i}=\sqrt{a_{i i}}, i=1, \ldots k ; a_{i}=-\sqrt{a_{i i}}, i=k+1, \ldots N .
$$

Then

$$
\begin{gather*}
a_{i j}=a_{i} a_{j}, \quad a_{1}+\ldots+a_{N}=0, \\
c-a_{i} a_{j} \geq \frac{1}{2}, \text { for all } i \neq j, \\
\sum_{j \neq i} \frac{1}{c-a_{i} a_{j}}=N, i=1, \ldots, N . \tag{3}
\end{gather*}
$$

Auxiliary Results - Supplemental Theorem

If $a_{i}=0$ then the i-th row and i-th column in A are zero x_{i} is equidistant to all other points x_{j}. So, $a_{i} \neq 0$ for all $i=1, \ldots, N$.

Theorem (Supplemental)

Let a_{1}, \ldots, a_{N} be real numbers that satisfy the following assumptions

$$
\begin{gathered}
a_{1} \geq \ldots \geq a_{k}>0>a_{k+1} \geq \ldots \geq a_{N}, \quad a_{1}+\ldots,+a_{N}=0, \\
\sum_{j \neq i} \frac{1}{c-a_{i} a_{j}}=N, i=1, \ldots, N, \quad c-a_{i} a_{j}>0, \quad \text { for all } i \neq j,
\end{gathered}
$$

where $c:=\frac{N-1}{N}$. Then

$$
a_{1}=\ldots=a_{k}, \quad a_{k+1}=\ldots=a_{N} .
$$

Auxiliary Results - Technical Lemma

Lemma (Technical)

Suppose a_{1}, \ldots, a_{N} are as in Supplemental Theorem. Then for all $i=1, \ldots, N$ we have

$$
\begin{equation*}
T_{i}:=\sum_{j \neq i} \frac{c-a_{j}^{2}}{c-a_{i} a_{j}}=N-2 . \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{i}\right|<\sqrt{c}, \quad i=1, \ldots, N . \tag{5}
\end{equation*}
$$

Proof of the Technical Lemma - Eq. (4)

Denote

$$
Q_{i}:=\sum_{j \neq i} \frac{1}{c-a_{i} a_{j}}, \quad R_{i}:=\sum_{j \neq i} \frac{a_{j}}{c-a_{i} a_{j}}, \quad S_{i}:=\sum_{j \neq i} \frac{a_{j}^{2}-a_{j} a_{j}}{c-a_{i} a_{j}} .
$$

By the assumption $Q_{i}=N$ for all i, we get (recall $a_{i} \neq 0$)

$$
N-1=\sum_{j \neq i} \frac{c-a_{i} a_{j}}{c-a_{i} a_{j}}=c Q_{i}-a_{i} R_{i}=N-1-a_{i} R_{i},
$$

or $R_{i}=0$. Along with $a_{i}=-\left(a_{1}+\ldots+a_{i-1}+a_{i+1}+\ldots a_{N}\right)$

$$
a_{i}=\left(c-a_{i}^{2}\right) \sum_{j \neq i} \frac{a_{j}}{c-a_{i} a_{j}}-\sum_{j \neq i} a_{j}=a_{i} \sum_{j \neq i} \frac{a_{j}^{2}-a_{j} a_{i}}{c-a_{i} a_{j}}=a_{i} S_{i},
$$

or $S_{i}=1$ and subsequently

$$
N-2=\sum_{j \neq i} \frac{c-a_{i} a_{j}}{c-a_{i} a_{j}}-S_{i}=\sum_{j \neq i} \frac{c-a_{j}^{2}}{c-a_{i} a_{j}}=T_{i}
$$

Proof of the Technical Lemma - Ineq. (5)

W.I.g. $\left|a_{1}\right| \geq\left|a_{i}\right|$. From $S_{i}=1$ we have

$$
1=\sum_{j \neq i} \frac{a_{j}^{2}-a_{i} a_{j}}{c-a_{i} a_{j}}=\frac{a_{1}^{2}-a_{i} a_{1}}{c-a_{i} a_{1}}+\sum_{2 \leq j \neq i} \frac{a_{j}^{2}-a_{i} a_{j}}{c-a_{i} a_{j}} .
$$

Then

$$
\sum_{2 \leq j \neq i} \frac{a_{j}^{2}-a_{i} a_{j}}{c-a_{i} a_{j}}=\frac{c-a_{1}^{2}}{c-a_{i} a_{1}}, \quad i=2, \ldots, N
$$

Therefore,
$\sum_{i=2}^{N} \sum_{2 \leq j \neq i} \frac{a_{j}^{2}-a_{i} a_{j}}{c-a_{i} a_{j}}=\sum_{i>j=2}^{N} \frac{\left(a_{i}-a_{j}\right)^{2}}{c-a_{i} a_{j}}=\left(c-a_{1}^{2}\right) \sum_{i=2}^{N} \frac{1}{c-a_{i} a_{1}}=\left(c-a_{1}^{2}\right) Q_{1}$.
Since $Q_{1}=N$ and by the assumption $c-a_{i} a_{j}>0$, we have

$$
\begin{equation*}
c-a_{1}^{2}=\frac{1}{N} \sum_{i>j=2}^{N} \frac{\left(a_{i}-a_{j}\right)^{2}}{c-a_{i} a_{j}}>0 \tag{6}
\end{equation*}
$$

Thus, (6) implies $c-a_{i}^{2}>0$.

Proof of Supplemental Theorem

Let

$$
F(t):=\sum_{j=1}^{N} \frac{c-a_{j}^{2}}{c-t a_{j}} .
$$

Then Technical Lemma implies that for all $i=1, \ldots, N$

$$
\begin{equation*}
F\left(a_{i}\right)=N-1 . \tag{7}
\end{equation*}
$$

Since

$$
F^{\prime \prime}(t)=2 \sum_{j} \frac{\left(c-a_{j}^{2}\right) a_{j}^{2}}{\left(c-t a_{j}\right)^{3}},
$$

by Technical Lemma again we have $F^{\prime \prime}(t)>0$ for $t \in(-\sqrt{c}, \sqrt{c})$. Hence $F(t)$ is a convex function in this interval. Therefore, the equation $F(t)=N-1$ has at most two solutions. By assumptions we have $a_{i}>0$ for $i=1, \ldots, k$ and $a_{i}<0$, for $i=k+1, \ldots, N$. Thus, (7) yields that all positive a_{i} are equal and all negative a_{i} are equal too. \square

Proofs of Degenerate, Equidistant, and Relative Minima cases

Even more complex and involved :-(

Degenerate case - h-energy

Theorem (Degenerate Case)

Let X be a degenerate configuration, $N \geq d+2$, and $h:[-1,1] \rightarrow \mathbb{R}$ be a strictly convex potential function. Then there exists a continuous perturbation that decreases the h-energy $E_{h}(X)$.

Proof.

$$
\begin{gathered}
x_{1}=\left(r, \sqrt{1-r^{2}}, 0, \ldots, 0\right), x_{2}=\left(r,-\sqrt{1-r^{2}}, 0, \ldots, 0\right) \\
x_{j}=\left(c_{j 1}, c_{j 2}, c_{j 3}, \ldots, 0\right), j=3, \ldots, N,
\end{gathered}
$$

where $c_{32} \neq 0$. Preturb to \widetilde{X}

$$
\begin{gathered}
\tilde{x}_{1}=\left(r, \sqrt{1-r^{2}} \cos \theta, 0, \ldots, \sqrt{1-r^{2}} \sin \theta\right), \\
\tilde{x}_{2}=\left(r,-\sqrt{1-r^{2}} \cos \theta, 0, \ldots,-\sqrt{1-r^{2}} \sin \theta\right)
\end{gathered}
$$

Then $E_{h}(X)>E_{h}(\widetilde{X})$

Equidistant case

Theorem (Equidistant case)

A non-degenerate stationary log-energy configuration of type $\{1,1, \ldots, k, \ell\}$, where $1+1+\cdots+k+\ell=d+2$ is a saddle point. Moreover, there is a continuous perturbation that decreases the logarithmic energy of the $\{1, k, \ell\}$ part of the configuration to either $\{k+1, \ell\}$ or $\{k, \ell+1\}$. Sequence of such perturbations leads to relative minima as described in Main Theorem.

Equidistant case proof

Proof.

Let $X=\{1, k, \ell\}$ with $x_{N} \cdot x_{i}=-1 /(N-1)$. Denote $x_{i}=\left(y_{i}, \frac{-1}{N-1}\right)$, $z_{i}:=(N-1) y_{i} / \sqrt{N(N-2)}, z_{i} \in \mathbb{S}^{d-2}$ satisfies force equation.

$$
\begin{aligned}
& Y:=\left\{\left(\sqrt{1-1 /(k+m)^{2}} y_{i}, 0_{m-1},-1 /(k+m)\right)\right\}, \\
& Z:=\left\{\left(0_{k-1}, \sqrt{1-1 /(k+m)^{2}} z_{j},-1 /(k+m)\right)\right\}
\end{aligned}
$$

Perturb to

$$
\begin{aligned}
& \widetilde{Y}_{t}=\left\{\left(\sqrt{1-(m t+1 /(k+m))^{2}} y_{i}, 0_{m-1},-1 /(k+m)-m t\right)\right\}_{i=1}^{k} \\
& \widetilde{Z}_{t}=\left\{\left(0_{k-1}, \sqrt{1-(k t-1 /(k+m))^{2}} z_{j},-1 /(k+m)+k t\right)\right\}_{j=1}^{m}
\end{aligned}
$$

Then $E_{h}\left(\widetilde{X}_{t}\right)$ has local max at $t=0$ and decreases to $\{k, \ell+1\}$ or $\{k+1, \ell\}$.

Relative minima case

Theorem (Equidistant case)

Let $X=\{k, \ell\}$ a configuration of two orthogonal simplexes X_{k} and X_{ℓ}. Any perturbation will increase the energy locally.

We need two inequalities.

Relative minima case - Inequality 1

Lemma (H1)

Let $A=\left(a_{i j}\right)$ be an $m \times m$ matrix, $m \geq 3$, such that
(a) $a_{i i}=0, \quad i=1, \ldots, m$;
(b) $\sum_{j=1}^{m} a_{i j}=0$.

Then the following inequality holds

$$
\begin{equation*}
\sum_{1 \leq i<j \leq m}\left(a_{i j}+a_{j i}\right)^{2} \geq \frac{1}{m-2} \sum_{j=1}^{m} x_{j}^{2}, \quad \text { where } \quad x_{j}:=\sum_{i=1}^{m} a_{i j} . \tag{8}
\end{equation*}
$$

Proof of Inequality 1: part 1

For all $i, j=1, \ldots, m$ define

$$
\beta_{i j}:=\frac{1}{m^{2}-2 m} x_{i}+\frac{m-1}{m^{2}-2 m} x_{j}, \quad i \neq j, \quad \text { and } \beta_{i i}=0 .
$$

Since $\sum_{j=1}^{m} x_{j}=0$, we have $\sum_{j=1}^{m} \beta_{i j}=0$ and $\sum_{i=1}^{m} \beta_{i j}=x_{j}$, i.e.

$$
\sum_{j=1}^{m} \beta_{i j}=\sum_{j=1}^{m} a_{i j} \quad \text { and } \quad \sum_{i=1}^{m} \beta_{i j}=\sum_{i=1}^{m} a_{i j}
$$

Let $\tilde{a}_{i j}:=a_{i j}-\beta_{i j}$. Then

$$
\sum_{i} \widetilde{a}_{i j}=\sum_{j} \widetilde{a}_{i j}=0 .
$$

Proof of Inequality 1: part 2

Consider $t_{i j}:=a_{i j}+a_{j i}=w_{i j}+\beta_{i j}+\beta_{j i}$, where $w_{i j}=\widetilde{a}_{i j}+\widetilde{a}_{j i}$. Then $t_{i j}=w_{i j}+\frac{x_{i}}{m-2}+\frac{x_{j}}{m-2}, i \neq j$, where $\sum_{i} w_{i j}=\sum_{j} w_{i j}=0$ (observe that $\left.t_{i i}=0\right)$. Then

$$
\sum_{i<j} t_{i j}^{2}=\sum_{i<j}\left(w_{i j}+\frac{x_{i}}{m-2}+\frac{x_{j}}{m-2}\right)^{2}=\sum_{i<j} w_{i j}^{2}+\frac{1}{m-2} \sum_{i=1}^{m} x_{i}^{2}
$$

which implies (8).

Relative minima case - Inequality 2

Lemma (H2)

Given an $m \times n$ matrix $F=\left(f_{i j}\right)$ and an $n \times m$ matrix $G=\left(g_{i j}\right)$ such that $\sum_{j=1}^{n} f_{i j}=0$ for all $i=1, \ldots, m$ and $\sum_{j=1}^{m} g_{i j}=0$ for all $i=1, \ldots, n$. Then we have

$$
\begin{gathered}
\sum_{i=1}^{n} \sum_{j=1}^{m}\left(f_{i j}+g_{j i}\right)^{2} \geq \frac{1}{m} \sum_{j=1}^{n} y_{j}^{2}+\frac{1}{n} \sum_{i=1}^{m} z_{i}^{2}, \\
y_{j}:=\sum_{i=1}^{m} f_{i j}, \quad z_{i}:=\sum_{j=1}^{n} g_{j i} .
\end{gathered}
$$

Proof of Inequality 2

Let

$$
\widetilde{f}_{i j}:=f_{i j}-\frac{y_{j}}{m} \quad \text { and } \quad \widetilde{g}_{i j}:=g_{i j}-\frac{z_{i}}{n} .
$$

Since $\sum_{j} y_{j}=\sum_{i} z_{i}=0$, we have $\sum_{i, j}\left(\widetilde{f}_{i j}+\widetilde{g}_{j i}\right)=0$. Let $t_{i j}:=\widetilde{f}_{i j}+\widetilde{g}_{j i}$. Observe that

$$
\sum_{i=1}^{m} t_{i j}=\sum_{j=1}^{n} t_{i j}=0
$$

From

$$
f_{i j}+g_{j i}=\frac{y_{j}}{m}+\frac{z_{i}}{n}+t_{i j} .
$$

one derives that
$\sum_{i=1}^{m} \sum_{j=1}^{n}\left(f_{i j}+g_{j i}\right)^{2}=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(\frac{y_{j}}{m}+\frac{z_{i}}{n}+t_{i j}\right)^{2}=\sum_{i=1}^{m} \sum_{j=1}^{n} t_{i j}^{2}+\frac{1}{m} \sum_{j=1}^{n} y_{j}^{2}+\frac{1}{n} \sum_{i=1}^{m} z_{i}^{2}$,
which completes the proof.

Relative minima case - Proof (part 1)

Perturb the two orthogonal simplexes $(k+\ell=d+2)$

$$
X_{k}=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, \quad X_{\ell}=\left\{x_{k+1}, x_{m+2}, \ldots, x_{k+\ell}\right\}
$$

to $Y=Y_{k} \cup Y_{\ell}$, where $y_{i}:=x_{i}+h_{i},\left\|h_{i}\right\|<\epsilon$. Since $\left\|x_{i}\right\|=\left\|y_{i}\right\|=1$, we have $2 x_{i} \cdot h_{i}=-\left\|h_{i}\right\|^{2}, 1-y_{i} \cdot y_{j}=\left(1-x_{i} \cdot x_{j}\right)\left(1-z_{i, j}\right)$, where

$$
z_{i, j}:= \begin{cases}\frac{k-1}{k}\left(x_{i} \cdot h_{j}+x_{j} \cdot h_{i}+h_{i} \cdot h_{j}\right), & 1 \leq i \neq j \leq k \\ x_{i} \cdot h_{j}+x_{j} \cdot h_{i}+h_{i} \cdot h_{j}, & i \leq k<j \text { or } j \leq k<i \tag{9}\\ \frac{\ell-1}{\ell}\left(x_{i} \cdot h_{j}+x_{j} \cdot h_{i}+h_{i} \cdot h_{j}\right), & k<i \neq j \leq k+\ell\end{cases}
$$

Clearly $\left|z_{i, j}\right|<2 \epsilon+O\left(\epsilon^{2}\right)$. We find

$$
\begin{equation*}
2\left[E_{\log }(Y)-E_{\log }(X)\right]=\sum_{1 \leq i \neq j \leq k+\ell}\left(z_{i, j}+\frac{z_{i, j}^{2}}{2}\right)+O\left(\epsilon^{3}\right) . \tag{10}
\end{equation*}
$$

Relative minima case - Proof (part 2)

W.I.g. $x_{i}=\left(p_{i}, 0\right), h_{i}=\left(a_{i}, b_{i}\right), x_{k+j}=\left(0, q_{j}\right), h_{k+j}=\left(c_{j}, d_{j}\right)$, where $p_{i}, a_{i}, c_{j} \in \mathbb{R}^{k-1}$ and $q_{j}, b_{i}, d_{j} \in \mathbb{R}^{\ell-1}$. Straight-forward calculations show that the linear in ϵ term in (10) vanishes. The quadratic term is

$$
\begin{align*}
& D:=\sum_{1 \leq i \neq j \leq k+\ell} \frac{h_{i} \cdot h_{j}}{1-x \cdot x_{j}}+\frac{1}{2} \sum_{1 \leq i \neq j \leq k+\ell}\left(\frac{x_{i} \cdot h_{j}+x_{j} \cdot h_{i}}{1-x \cdot x_{j}}\right)^{2} \\
& =\left\|\sum_{i=1}^{k+\ell} h_{i}\right\|^{2}-\frac{1}{k}\left(\left\|\sum_{i=1}^{k} a_{i}\right\|^{2}+\left\|\sum_{i=1}^{k} b_{i}\right\|^{2}\right)-\frac{1}{\ell}\left(\left\|\sum_{j=1}^{\ell} c_{j}\right\|^{2}+\left\|\sum_{j=1}^{\ell} d_{j}\right\|^{2}\right) \\
& +\left(\frac{k-1}{k}\right)^{2} \sum_{1 \leq i<j \leq k}\left(p_{i} \cdot a_{j}+p_{j} \cdot a_{i}\right)^{2}+\left(\frac{\ell-1}{\ell}\right)^{2} \sum_{1 \leq i<j \leq \ell}\left(q_{i} \cdot d_{j}+q_{j} \cdot d_{i}\right)^{2} \tag{11}\\
& +\sum_{i=1}^{k} \sum_{j=1}^{\ell}\left(p_{i} \cdot c_{j}+q_{j} \cdot b_{i}\right)^{2} .
\end{align*}
$$

Relative minima case - Proof (part 3)

By extracting another $O\left(\epsilon^{3}\right)$ term we may reduce the condition $2 x_{i} \cdot h_{i}=-\left\|h_{i}\right\|^{2}$ to $x_{i} \cdot h_{i}=0$.
Thus, in this case we shall reduce the theorem to proving the inequalities

$$
\begin{align*}
& D_{1}:=\left(\frac{k-1}{k}\right)^{2} \sum_{1 \leq i<j \leq k}\left(p_{i} \cdot a_{j}+p_{j} \cdot a_{i}\right)^{2}-\frac{1}{k}\left\|\sum_{i=1}^{k} a_{i}\right\|^{2} \geq 0 \tag{12}\\
& D_{2}:=\left(\frac{\ell-1}{\ell}\right)^{2} \sum_{1 \leq i<j \leq \ell}\left(q_{i} \cdot d_{j}+q_{j} \cdot d_{i}\right)^{2}-\frac{1}{\ell}\left\|\sum_{j=1}^{\ell} d_{j}\right\|^{2} \geq 0 \tag{13}
\end{align*}
$$

and

$$
\begin{equation*}
D_{3}:=\sum_{i=1}^{k} \sum_{j=1}^{\ell}\left(p_{i} \cdot c_{j}+q_{j} \cdot b_{i}\right)^{2}-\frac{1}{k}\left\|\sum_{i=1}^{k} b_{i}\right\|^{2}-\frac{1}{\ell}\left\|\sum_{j=1}^{\ell} c_{j}\right\|^{2} \geq 0 \tag{14}
\end{equation*}
$$

provided $\left\{p_{1}, \ldots, p_{k}\right\}$ and $\left\{q_{1}, \ldots, q_{\ell}\right\}$ are orthogonal k - and ℓ-simplexes and $p_{i} \cdot a_{i}=0$ and $q_{j} \cdot d_{j}=0$.

Relative minima case - Proof (part 4)

Embed the first simplex $X_{k}=\left\{p_{1}, \ldots, p_{k}\right\}$ in the hyperplane of \mathbb{R}^{k} that is orthogonal to $(1,1, \ldots, 1)$. Similarly, we embed the second simplex $X_{\ell}=\left\{q_{1}, \ldots, q_{\ell}\right\}$ in \mathbb{R}^{ℓ}. Thus, we embed $X_{k} \cup X_{\ell} \subset \mathbb{R}^{k} \times \mathbb{R}^{\ell}$.
Let $w_{k}=\left(\frac{1}{k}, \frac{1}{k}, \ldots, \frac{1}{k}\right) \in \mathbb{R}^{k}, \widetilde{p}_{i}:=e_{i}-w_{k}$, so $p_{i}=\sqrt{\frac{k}{k-1}} \widetilde{p}_{i}$. Similarly, if $\widetilde{q}_{j}:=e_{j}-w_{\ell}$, then $q_{j}=\sqrt{\frac{\ell}{\ell-1}} \widetilde{q}_{j}$.
For the perturbation vectors $a_{i}, b_{i}, c_{j}, d_{j}$, we have

$$
\sum_{j=1}^{k} a_{i j}=0, \quad \sum_{j=1}^{\ell} b_{i j}=0, \quad \sum_{j=1}^{k} c_{i j}=0, \quad \sum_{j=1}^{\ell} d_{i j}=0 .
$$

$p_{i} \cdot a_{i}=0 \Rightarrow a_{i i}=0, q_{j} \cdot d_{j}=0 \Rightarrow a_{i i}=0$. Using $\widetilde{p}_{i} \cdot a_{j}=a_{j i}$ (12) is

$$
\sum_{1 \leq i<j \leq k}\left(a_{i j}+a_{j i}\right)^{2} \geq \frac{1}{k-1} \sum_{j=1}^{k}\left(\sum_{i=1}^{k} a_{i j}\right)^{2}
$$

which follows from Lemma (H1). Similarly one gets (13).

Relative minima case - Proof (part 5)

Equality in (12) and (13) holds iff $a_{i j}+a_{j i}=0$ and $d_{i j}+d_{j i}=0$ respectively, which is equivalent to

$$
p_{i} \cdot a_{j}+p_{j} \cdot a_{i}=0, q_{j} \cdot d_{i}+q_{i} \cdot d_{j}=0, \sum a_{i}=0, \sum d_{j}=0 .
$$

Lemma (H2) is used to derive the inequality (14). We have that

$$
p_{i} \cdot c_{j}+q_{j} \cdot b_{i}=\sqrt{\frac{k}{k-1}} c_{j i}+\sqrt{\frac{\ell}{\ell-1}} b_{i j}
$$

with the substitution $f_{i j}=\sqrt{\frac{\ell}{\ell-1}} b_{i j}$ and $g_{j i}=\sqrt{\frac{k}{k-1}} c_{j i}$ we re-write (14) as

$$
\sum_{i=1}^{\ell} \sum_{j=1}^{k}\left(f_{i j}+g_{i j}\right)^{2} \geq \frac{1}{k} \frac{\ell-1}{\ell} \sum_{j=1}^{\ell} y_{j}^{2}+\frac{1}{\ell} \frac{k-1}{k} \sum_{i=1}^{k} z_{i}^{2}
$$

which clearly follows from Lemma (H2). Moreover, equality occurs if and only if $p_{i} \cdot c_{j}+q_{j} \cdot b_{i}=0, \sum c_{i}=0$, and $\sum b_{j}=0$.

Relative minima case - Proof (part 6)

So, the quadratic in ϵ term $D>0$, or $E_{\log }(Y)-E_{\log }(X)>0$, for any perturbation vectors $\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}\left(p_{i} \cdot a_{i}=0, q_{j} \cdot d_{j}=0\right)$, except when

$$
p_{i} \cdot a_{j}+p_{j} \cdot a_{i}=0, \quad q_{j} \cdot d_{i}+q_{i} \cdot d_{j}=0, \quad p_{i} \cdot c_{j}+q_{j} \cdot b_{i}=0,
$$

$$
\sum_{i=1}^{k} a_{i}=0, \quad \sum_{i=1}^{k} b_{i}=0, \sum_{j=1}^{\ell} c_{i}=0, \quad \sum_{j=1}^{\ell} d_{j}=0
$$

Utilizing (9) and these conditions, one simplifies (10) to

$$
\begin{aligned}
2\left[E_{\log }(Y)-E_{\log }(X)\right]= & \frac{(k-1)^{2}}{2 k^{2}} \sum_{1 \leq i \neq j \leq k}\left(a_{i} \cdot a_{j}\right)^{2}+\frac{(\ell-1)^{2}}{2 \ell^{2}} \sum_{1 \leq i \neq j \leq \ell}\left(d_{i} \cdot d_{j}\right)^{2} \\
& +\sum_{i=1}^{k} \sum_{j=1}^{\ell}\left(b_{i} \cdot c_{j}\right)^{2}+O\left(\epsilon^{5}\right) .
\end{aligned}
$$

Clearly, the quartic term will be positive, unless all inner products vanish, in which case we easily derive that $a_{i}=c_{j}=0$ and $b_{i}=d_{j}=0$ for all $i=1, \ldots, k$ and $j=1, \ldots, \ell$. This completes the proof.

THANK YOU!

