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(Soberén, Tang 2020+)

For any 2n + 1 points on the plane, there exists a Hamiltonian cycle
whose induced disks intersect
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Now, the main topic.

Joint work with Florian Frick.




o

>

Ha












(Birch 1959)
Any 3q points in the plane can be split into g cycles that surround a
common point.



(Birch 1959)

common point.

Any 3qg points in the plane can be split into g cycles that surround a

o>



(Birch 1959)

intersect.

Any 3qg points in the plane can be split into g sets whose convex hulls



(Birch 1959)

intersect.

Any 3qg points in the plane can be split into g sets whose convex hulls

o>



(Birch 1959)

Any 3qg points in the plane can be split into g sets whose convex hulls
intersect.

«4O>r «F>» «=)>»

« =

o>



(Birch 1959)
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whose images intersect.
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For any continuous map f : A;_1)g+1) — RY, are there g
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(Barjméczy, Barany, 1979) Yes! - For g =2
(Barany, Shlosman, Sziics, 1981) Yes! - For g prime
(Ozaydin, 1987) Yes! - For g a prime power
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(Frick, Soberén, 2020+)

For any continuous map f : Agg,1)-1 — RY, there are g vertex-disjoint
faces of Ag(gy1)-1 whose images intersect.

DA



The German trick



The German trick

Add one point



The German trick

Add one point
and ignore it.
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We get a map [q]*" — (R¥*1)?
Do we ever have (p1, p2, p3) = (x, x, x) for some x?
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(Dold 1983)

If X and Y have free actions of a group G, X is at
least n-connected, and Y is at most n-dimensional,
then there exist no continuous equivariant map

X—>G Y.
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[g]*" is Highly connected.
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Let p be a very large prime number.



Let p be a very large prime number.
Assign to each vertex a set of labels in [p].
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Assign to each vertex a face of a simplicial complex 2.
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New configuration space: > *"
» > must have a free action of Z,.
» > must be highly connected.

» > must have a large independent set.
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Sparse, highly connected, symmetric
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f oy — RO

n<gq(d+1)

This proves the theorem if n > g(d + 1) + 1
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Gaps have at least g — 1 vertices



This complex is not connected enough!



It has maximal faces of dimension ~ T’il



Idea: Take the faces of dimension ~ g and their subsets.



This allows us to prove a topological Tverberg theorem
with g(d + 1) + 1 vertices
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C; - Subsets of [p] that can be extended to a face
with at least a vertices - cyclic

L5 - Subsets of [p] that can be extended to a face
with at least a vertices - Linear
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Cs, is the union of a disjoint simplices.
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C?2 ., is a triangulation of a disk bundle.
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Theorem. C?

(Gi1)g+1 is at least (a — 2)-connected.
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A final application of the german trick finishes the proof.



Assign faces of

)

to each vertex



