The topological Tverberg problem beyond prime powers.

A warm-up

A warm－up

4ロ

（Huemer，Pérez－Lantero，Seara，Silveira 2019）
For any $2 n$ points on the plane，there exists a perfect matching whose induced disks intersect

(Huemer, Pérez-Lantero, Seara, Silveira 2019)
For any $2 n$ points on the plane, there exists a perfect matching whose induced disks intersect
（Huemer，Pérez－Lantero，Seara，Silveira 2019）
For any $2 n$ points on the plane，there exists a perfect matching whose induced disks intersect
(Soberón, Tang 2020+)
For any $2 n$ points on the plane, there exists a Hamiltonian path whose induced disks intersect

(Soberón, Tang 2020+)
For any $2 n$ points on the plane, there exists a Hamiltonian path whose induced disks intersect

(Soberón, Tang 2020+)
For any $2 n$ points on the plane, there exists a Hamiltonian path whose induced disks intersect
(Soberón, Tang 2020+)
For any $2 n$ points on the plane, there exists a Hamiltonian path whose induced disks intersect
（Soberón，Tang 2020＋）
For any $2 n+1$ points on the plane，there exists a Hamiltonian cycle whose induced disks intersect

Now, the main topic.

Joint work with Florian Frick.

（Birch 1959）
Any $3 q$ points in the plane can be split into q cycles that surround a common point．

（Birch 1959）
Any $3 q$ points in the plane can be split into q cycles that surround a common point．

(Birch 1959)
Any $3 q$ points in the plane can be split into q sets whose convex hulls intersect.

(Birch 1959)

Any $3 q$ points in the plane can be split into q sets whose convex hulls intersect.

（Birch 1959）

Any $3 q$ points in the plane can be split into q sets whose convex hulls intersect．

（Birch 1959）

Any $3 q-2$ points in the plane can be split into q sets whose convex hulls intersect．

(Tverberg 1966)

Any $(q-1)(d+1)+1$ points in \mathbb{R}^{d} can be split into q sets whose convex hulls intersect.

（Tverberg 1966）

Any $q(d+1)-d$ points in \mathbb{R}^{d} can be split into q sets whose convex hulls intersect．

(Tverberg 1966)

Any $q(d+1)-d$ points in \mathbb{R}^{d} can be split into q sets whose convex hulls intersect.

(Tverberg 1966)

Any $q(d+1)-d$ points in \mathbb{R}^{d} can be split into q sets whose convex hulls intersect.

For any linear map $f: \Delta_{3} \rightarrow \mathbb{R}^{2}$, there are 2 vertex-disjoint faces of Δ_{3} whose images intersect.

（Tverberg 1966）
For any linear map $f: \Delta_{(q-1)(d+1)} \rightarrow \mathbb{R}^{d}$ ，there are q vertex－disjoint faces of $\Delta_{(q-1)(d+1)}$ whose images intersect．

(Tverberg 1966)
For any linear map $f: \Delta_{(q-1)(d+1)} \rightarrow \mathbb{R}^{d}$, there are q vertex-disjoint faces of $\Delta_{(q-1)(d+1)}$ whose images intersect.

(Bárány, 1976) - Conjecture.
For any continuous map $f: \Delta_{(q-1)(d+1)} \rightarrow \mathbb{R}^{d}$, are there q vertex-disjoint faces of $\Delta_{(q-1)(d+1)}$ whose images intersect?

(Bárány, 1976) - Conjecture.
For any continuous map $f: \Delta_{(q-1)(d+1)} \rightarrow \mathbb{R}^{d}$, are there q vertex-disjoint faces of $\Delta_{(q-1)(d+1)}$ whose images intersect?

(Bárány, 1976) - Conjecture.
For any continuous map $f: \Delta_{(q-1)(d+1)} \rightarrow \mathbb{R}^{d}$, are there q vertex-disjoint faces of $\Delta_{(q-1)(d+1)}$ whose images intersect?
(Barjmóczy, Bárány, 1979) Yes! - For $q=2$

(Bárány, 1976) - Conjecture.
For any continuous map $f: \Delta_{(q-1)(d+1)} \rightarrow \mathbb{R}^{d}$, are there q vertex-disjoint faces of $\Delta_{(q-1)(d+1)}$ whose images intersect?
(Barjmóczy, Bárány, 1979) Yes! - For $q=2$ (Bárány, Shlosman, Szücs, 1981) Yes! - For q prime

（Bárány，1976）－Conjecture．
For any continuous map $f: \Delta_{(q-1)(d+1)} \rightarrow \mathbb{R}^{d}$ ，are there q vertex－disjoint faces of $\Delta_{(q-1)(d+1)}$ whose images intersect？
（Barjmóczy，Bárány，1979）Yes！－For $q=2$
（Bárány，Shlosman，Szücs，1981）Yes！－For q prime （Özaydin，1987）Yes！－For q a prime power

It's Topology 's fault!

It's Topology 's fault!

(Frick, 2015) No! - For q not a prime power

It's Florian Frick 's fault!

(Frick, 2015) No! - For q not a prime power

It's Isaac Mabillard 's fault!

(Frick, 2015) No! - For q not a prime power

It's Uli Wagner 's fault!

(Frick, 2015) No! - For q not a prime power

It's life 's fault!

(Frick, 2015) No! - For q not a prime power

It's life 's fault!

(Bárány, 1976) - Conjecture.
For any continuous map $f: \Delta_{(q-1)(d+1)} \rightarrow \mathbb{R}^{d}$, are there q vertex-disjoint faces of $\Delta_{(q-1)(d+1)}$ whose images intersect?

(Bárány, 1976) - Conjecture.
For any continuous map $f: \Delta_{(q-1)(d+1)} \rightarrow \mathbb{R}^{d}$, are there q vertex-disjoint faces of $\Delta_{(q-1)(d+1)}$ whose images intersect?

(Blagojević, Frick, Ziegler, 2014) - Conjecture.
For any continuous map $f: \Delta_{q(d+1)-1} \rightarrow \mathbb{R}^{d}$, are there q vertex-disjoint faces of $\Delta_{q(d+1)-1}$ whose images intersect?

(Blagojević, Frick, Ziegler, 2014) - Conjecture.
For any continuous map $f: \Delta_{q(d+1)-1} \rightarrow \mathbb{R}^{d}$, are there q vertex-disjoint faces of $\Delta_{q(d+1)-1}$ whose images intersect?

(Frick, Soberón, 2020+)
For any continuous map $f: \Delta_{q(d+1)-1} \rightarrow \mathbb{R}^{d}$, there are q vertex-disjoint faces of $\Delta_{q(d+1)-1}$ whose images intersect.

The German trick

The German trick

Add one point

The German trick

Add one point and ignore it．

Suppose $q+1$ is a prime power

Suppose $q+1$ is a prime power and we have $q(d+1)$ points

Suppose $q+1$ is a prime power and we have $q(d+1)$ points

[^0]
Suppose $q+1$ is a prime power and we have $q(d+1)$ points

$$
q(d+1) \rightarrow q(d+1)+1
$$

$$
q(d+1) \rightarrow((q+1)-1)(d+1)+1
$$

$$
q(d+1) \rightarrow((q+1)-1)(d+1)+1
$$

$$
q(d+1) \rightarrow((q+1)-1)(d+1)+1
$$

$$
q(d+1) \rightarrow((q+1)-1)(d+1)+1
$$

How do we prove the general case?

How do we prove the general case?

$$
\begin{aligned}
& \text {. } \\
& \text { - }
\end{aligned}
$$

\square-

Assign to each vertex a label in [q].

The space of all possible partitions can be parametrized with $[q]^{* n}$

The space of all possible partitions can be parametrized with $[q]^{* n}$

We get a map $[q]^{* n} \rightarrow\left(\mathbb{R}^{d+1}\right)^{q}$

We get a map $[q]^{* n} \rightarrow\left(\mathbb{R}^{d+1}\right)^{q}$
Do we ever have $\left(p_{1}, p_{2}, p_{3}\right)=(x, x, x)$ for some x ?

$$
\left(\lambda_{1}, \lambda_{1} f\left(x_{1}\right), \lambda_{2}, \lambda_{2} f\left(x_{2}\right), \ldots, \lambda_{q}, \lambda_{q} f\left(x_{q}\right)\right)
$$

We have a function $\tilde{f}:[q]^{* n} \rightarrow\left(\mathbb{R}^{d+1}\right)^{q}$

$$
\begin{aligned}
& \lambda_{1} \lambda_{1} x_{1} \\
& \left.\begin{array}{lllllll}
\bullet \bullet & \bullet & \bullet & \bullet & \longleftarrow & {[q]} \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \longleftarrow \\
\bullet & \bullet & \bullet & {[q]} \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \longleftarrow
\end{array}\right] \\
& \text { ■ } \\
& A_{1} \\
& \lambda_{1}, \lambda_{1} f\left(x_{1}\right) \\
& \left.\lambda_{2}, \lambda_{2} f\left(x_{2}\right), \ldots, \lambda_{q}, \lambda_{q} f\left(x_{q}\right)\right)
\end{aligned}
$$

We have a function $\tilde{f}:[q]^{* n} \rightarrow\left(\mathbb{R}^{d+1}\right)^{q}$

$$
\begin{aligned}
& \lambda_{1} \quad \lambda_{1} x_{1}
\end{aligned}
$$

$$
\begin{aligned}
& A_{1} \\
& \lambda_{1}, \lambda_{1} f\left(x_{1}\right) \lambda_{2}, \lambda_{2} f\left(x_{2}\right), \ldots, \lambda_{q}, \lambda_{q} f\left(x_{q}\right)
\end{aligned}
$$

We have a function $\tilde{f}:[q]^{* n} \rightarrow\left(\mathbb{R}^{d+1}\right)^{q}$

(Dold 1983)

If X and Y have free actions of a group G, X is at least n-connected, and Y is at most n-dimensional, then there exist no continuous equivariant map $X \rightarrow_{G} Y$.
[2]

$[2]^{* 2}$

$[2]^{* 3}$

$[2]^{* 3}$
$[q]^{* n}$ is Highly connected.

Let p be a very large prime number.

[^1]> Let p be a very large prime number. Assign to each vertex a set of labels in $[p]$.

$$
\{4,5,7\}
$$

$\{3,6\}$

- $\{1,2,3,7\}$

$$
\{1,2\}
$$

$\{2,6\}$
$\{3,5,6,7\}$

$$
\{1,5\}
$$

Let p be a very large prime number.
Assign to each vertex a set of labels in [p].

Let p be a very large prime number. Assign to each vertex a set of labels in $[p]$.

Let p be a very large prime number. Assign to each vertex a set of labels in $[p]$.

Let p be a very large prime number.
Assign to each vertex a set of labels in $[p]$.

Let p be a very large prime number.
Assign to each vertex a set of labels in $[p]$.

Let p be a very large prime number.
Assign to each vertex a set of labels in $[p]$.

Let p be a very large prime number.
Assign to each vertex a set of labels in $[p]$.

Let p be a very large prime number.
Assign to each vertex a set of labels in $[p]$.

Let p be a very large prime number.
Assign to each vertex a set of labels in $[p]$.

Let p be a very large prime number.
Assign to each vertex a set of labels in $[p]$.

Assign to each vertex a face of a simplicial complex Σ.

New configuration space: $\sum^{* n}$

New configuration space: $\sum^{* n}$
$-\Sigma$ must have a free action of Z_{p}.

New configuration space: $\sum^{* n}$

- Σ must have a free action of Z_{p}.
- Σ must be highly connected.

New configuration space: $\sum^{* n}$

- Σ must have a free action of Z_{p}.
- Σ must be highly connected.
- Σ must have a large independent set.

Sparse，highly connected，symmetric

Sparse, highly connected, symmetric

Sparse, highly connected, symmetric

Sparse, highly connected, symmetric

We make our new function

We make our new function

$$
f: \Sigma^{* n} \rightarrow \mathbb{R}^{p(d+1)}
$$

We make our new function

$$
f: \Sigma^{* n} \rightarrow \mathbb{R}^{p(d+1)}
$$

$$
f: \Sigma^{* n} \rightarrow \mathbb{R}^{p(d+1)}
$$

Connectedness $<$ Dimension

[^2]\[

$$
\begin{aligned}
& f: \Sigma^{* n} \rightarrow \mathbb{R}^{p(d+1)} \\
& n\left(\frac{p}{q}-c+2\right)-2<\text { Dimension }
\end{aligned}
$$
\]

$$
\begin{aligned}
& f: \Sigma^{* n} \rightarrow \mathbb{R}^{p(d+1)} \\
& n\left(\frac{p}{q}-c+2\right)-2<p(d+1)
\end{aligned}
$$

$$
\begin{gathered}
f: \Sigma^{* n} \rightarrow \mathbb{R}^{p(d+1)} \\
n\left(\frac{p}{q}-c+2\right)-2<p(d+1) \\
n\left(\frac{1}{q}-\frac{c-2}{p}\right)-\frac{2}{p}<d+1
\end{gathered}
$$

$$
\begin{gathered}
f: \Sigma^{* n} \rightarrow \mathbb{R}^{p(d+1)} \\
n\left(\frac{p}{q}-c+2\right)-2<p(d+1) \\
n\left(\frac{1}{q}-\frac{c-2}{p}\right)-\frac{2}{p}<d+1 \\
n\left(\frac{1}{q}\right) \leq d+1
\end{gathered}
$$

$$
\begin{gathered}
f: \Sigma^{* n} \rightarrow \mathbb{R}^{p(d+1)} \\
n\left(\frac{p}{q}-c+2\right)-2<p(d+1) \\
n\left(\frac{1}{q}-\frac{c-2}{p}\right)-\frac{2}{p}<d+1 \\
n \leq q(d+1)
\end{gathered}
$$

$$
\begin{gathered}
f: \Sigma^{* n} \rightarrow \mathbb{R}^{p(d+1)} \\
n \leq q(d+1)
\end{gathered}
$$

$$
\begin{gathered}
f: \Sigma^{* n} \rightarrow \mathbb{R}^{p(d+1)} \\
n \leq q(d+1)
\end{gathered}
$$

This proves the theorem if $n \geq q(d+1)+1$

Construction of Σ

Construction of Σ

This complex is not connected enough!

It has maximal faces of dimension $\sim \frac{p}{2 q-1}$

This allows us to prove a topological Tverberg theorem with $q(d+1)+1$ vertices

C_{p}^{a}－Subsets of $[p]$ that can be extended to a face with at least a vertices
C_{p}^{a} - Subsets of $[p]$ that can be extended to a face with at least a vertices - cyclic
C_{p}^{a} - Subsets of $[p]$ that can be extended to a face with at least a vertices - cyclic
L_{p}^{a} - Subsets of $[p]$ that can be extended to a face with at least a vertices
C_{p}^{a} - Subsets of $[p]$ that can be extended to a face with at least a vertices - cyclic
L_{p}^{a} - Subsets of $[p]$ that can be extended to a face with at least a vertices - Linear
$C_{9}^{3}, q=3$
$C_{9}^{3}, q=3$

$C_{9}^{3}, q=3$

$C_{9}^{3}, q=3$

$C_{9}^{3}, q=3$

$C_{9}^{3}, q=3$

$C_{9}^{3}, q=3$

$C_{a q}^{a}$ is the union of a disjoint simplices.
$C_{10}^{3}, q=3$

$$
C_{10}^{3}, q=3
$$

$$
C_{10}^{3}, q=3
$$

$$
C_{10}^{3}, q=3
$$

$C_{10}^{3}, q=3$

$C_{10}^{3}, q=3$

$C_{10}^{3}, q=3$

$C_{a q+1}^{a}$ is a triangulation of a disk bundle．

Theorem. $C_{(a+1) q+1}^{a}$ is at least $(a-2)$-connected.

A final application of the german trick finishes the proof.

[^0]: 4ロ〉4占〉4

[^1]:

[^2]:

