The topological Tverberg problem beyond prime powers.

Pablo Soberón Baruch College, City University of New York

A warm-up

A warm-up

(Huemer, Pérez-Lantero, Seara, Silveira 2019)

For any 2n points on the plane, there exists a perfect matching whose induced disks intersect

(Huemer, Pérez-Lantero, Seara, Silveira 2019)

For any 2n points on the plane, there exists a perfect matching whose induced disks intersect

(Huemer, Pérez-Lantero, Seara, Silveira 2019)
For any 2n points on the plane, there exists a perfect matching whose induced disks intersect

(Soberón, Tang 2020+)

Now, the main topic.

Joint work with Florian Frick.

Any 3q points in the plane can be split into q cycles that surround a common point.

Any 3q points in the plane can be split into q cycles that surround a common point.

Any 3q points in the plane can be split into q sets whose convex hulls intersect.

Any 3q points in the plane can be split into q sets whose convex hulls intersect.

Any 3q points in the plane can be split into q sets whose convex hulls intersect.

Any 3q - 2 points in the plane can be split into q sets whose convex hulls intersect.

Any (q-1)(d+1)+1 points in \mathbb{R}^d can be split into q sets whose convex hulls intersect.

Any q(d+1) - d points in \mathbb{R}^d can be split into q sets whose convex hulls intersect.

Any q(d+1)-d points in \mathbb{R}^d can be split into q sets whose convex hulls intersect.

Any q(d+1)-d points in \mathbb{R}^d can be split into q sets whose convex hulls intersect.

For any linear map $f:\Delta_3\to\mathbb{R}^2$, there are 2 vertex-disjoint faces of Δ_3 whose images intersect.

For any linear map $f:\Delta_{(q-1)(d+1)}\to\mathbb{R}^d$, there are q vertex-disjoint faces of $\Delta_{(q-1)(d+1)}$ whose images intersect.

For any **linear** map $f:\Delta_{(q-1)(d+1)}\to\mathbb{R}^d$, there are q vertex-disjoint faces of $\Delta_{(q-1)(d+1)}$ whose images intersect.

(Bárány, 1976) - Conjecture.

For any **continuous** map $f: \Delta_{(q-1)(d+1)} \to \mathbb{R}^d$, are there q vertex-disjoint faces of $\Delta_{(q-1)(d+1)}$ whose images intersect?

(Bárány, 1976) - Conjecture.

For any **continuous** map $f: \Delta_{(q-1)(d+1)} \to \mathbb{R}^d$, are there q vertex-disjoint faces of $\Delta_{(q-1)(d+1)}$ whose images intersect?

(Bárány, 1976) - Conjecture. For any continuous map $f:\Delta_{(q-1)(d+1)}\to\mathbb{R}^d$, are there q vertex-disjoint faces of $\Delta_{(q-1)(d+1)}$ whose images intersect?

(Barjmóczy, Bárány, 1979) Yes! - For q = 2

(Bárány, 1976) - Conjecture. For any continuous map $f:\Delta_{(q-1)(d+1)}\to\mathbb{R}^d$, are there q vertex-disjoint faces of $\Delta_{(q-1)(d+1)}$ whose images intersect?

(Barjmóczy, Bárány, 1979) Yes! - For q = 2 (Bárány, Shlosman, Szűcs, 1981) Yes! - For q prime

(Bárány, 1976) - Conjecture. For any **continuous** map $f:\Delta_{(q-1)(d+1)}\to\mathbb{R}^d$, are there q vertex-disjoint faces of $\Delta_{(q-1)(d+1)}$ whose images intersect?

(Barjmóczy, Bárány, 1979) Yes! - For q = 2 (Bárány, Shlosman, Szűcs, 1981) Yes! - For q prime (Özaydin, 1987) Yes! - For q a prime power

It's _____'s fault!

It's Topology 's fault!

It's Topology 's fault!

It's Florian Frick 's fault!

It's Isaac Mabillard 's fault!

It's Uli Wagner 's fault!

It's life 's fault!

It's life 's fault!

```
(Bárány, 1976) - Conjecture. For any continuous map f:\Delta_{(q-1)(d+1)}\to\mathbb{R}^d, are there q vertex-disjoint faces of \Delta_{(q-1)(d+1)} whose images intersect?
```


(Bárány, 1976) - Conjecture. For any continuous map $f:\Delta_{(q-1)(d+1)}\to\mathbb{R}^d$, are there q vertex-disjoint faces of $\Delta_{(q-1)(d+1)}$ whose images intersect?

(Blagojević, Frick, Ziegler, 2014) - Conjecture. For any continuous map $f:\Delta_{q(d+1)-1}\to\mathbb{R}^d$, are there q vertex-disjoint faces of $\Delta_{q(d+1)-1}$ whose images intersect?

(Blagojević, Frick, Ziegler, 2014) - Conjecture. For any continuous map $f:\Delta_{q(d+1)-1}\to\mathbb{R}^d$, are there q vertex-disjoint faces of $\Delta_{q(d+1)-1}$ whose images intersect?

(Frick, Soberón, 2020+)

For any **continuous** map $f:\Delta_{q(d+1)-1}\to\mathbb{R}^d$, there are q vertex-disjoint faces of $\Delta_{q(d+1)-1}$ whose images intersect.

The German trick

The German trick

Add one point

The German trick

Add one point and ignore it.

Suppose q + 1 is a prime power

Suppose q + 1 is a prime power and we have q(d + 1) points

Suppose q + 1 is a prime power and we have q(d + 1) points

- • •
- •
- •

 - •
 - • •

Suppose q + 1 is a prime power and we have q(d + 1) points

- • •
- •
- •
 - •
 - - • •

$$q(d+1) \rightarrow q(d+1)+1$$

$$q(d+1) \to ((q+1)-1)(d+1)+1$$

$$q(d+1) \to ((q+1)-1)(d+1)+1$$

$$q(d+1) \to ((q+1)-1)(d+1)+1$$

How do we prove the general case?

How do we prove the general case?

Assign to each vertex a label in [q].

Assign to each vertex a label in [q].

Assign to each vertex a label in [q].

Assign to each vertex a label in [q].

Assign to each vertex a label in [q].

The space of all possible partitions can be parametrized with $[q]^{*n}$

The space of all possible partitions can be parametrized with $[q]^{*n}$

We get a map $[q]^{*n} o \left(\mathbb{R}^{d+1}\right)^q$

We get a map $[q]^{*n} o (\mathbb{R}^{d+1})^q$ Do we ever have $(p_1, p_2, p_3) = (x, x, x)$ for some x?

- • • •
- • • •

$$\lambda_1 \qquad \lambda_1 x_1$$

$$\bullet \qquad \bullet \qquad \bullet \qquad \qquad [q]$$

$$\bullet \qquad \bullet \qquad \qquad \qquad [q]$$

$$\bullet \qquad \bullet \qquad \qquad \qquad [q]$$

$$(\lambda_1, \lambda_1 f(x_1), \lambda_2, \lambda_2 f(x_2), \dots, \lambda_q, \lambda_q f(x_q))$$

We have a function $ilde{f}:[q]^{*n} o \left(\mathbb{R}^{d+1}
ight)^q$

$$\lambda_{1} \quad \lambda_{1}x_{1}$$

$$\bullet \quad \bullet \quad \bullet \quad \qquad [q]$$

$$\bullet \quad \qquad \qquad [q]$$

$$\bullet \quad \qquad \qquad [q]$$

$$\bullet \quad \qquad \qquad \qquad [q]$$

$$\bullet \quad \qquad \qquad \qquad [q]$$

We have a function $ilde{f}:[q]^{*n} o \left(\mathbb{R}^{d+1}
ight)^q$

$$\lambda_{1} \quad \lambda_{1}x_{1}$$

$$\bullet \quad \bullet \quad \bullet \qquad \qquad [q]$$

$$\bullet \quad \bullet \qquad \qquad [q]$$

$$\bullet \quad \bullet \qquad \qquad [q]$$

$$\bullet \quad \bullet \qquad \qquad \qquad [q]$$

We have a function $\tilde{f}:[q]^{*n}\to \left(\mathbb{R}^{d+1}\right)^q$

(Dold 1983)

If X and Y have free actions of a group G, X is at least n-connected, and Y is at most n-dimensional, then there exist no continuous equivariant map $X \to_G Y$.

• [2]

 $[q]^{*n}$ is Highly connected.

Let p be a very large prime number.

Assign to each vertex a face of a simplicial complex Σ .

New configuration space: \sum^{*n}

New configuration space: \sum^{*n}

 $\triangleright \Sigma$ must have a free action of Z_p .

New configuration space: \sum^{*n}

- $\triangleright \Sigma$ must have a free action of Z_p .
- \triangleright Σ must be highly connected.

New configuration space: \sum^{*n}

- $\triangleright \Sigma$ must have a free action of Z_p .
- **Σ** must be highly connected.
- **Σ** must have a large independent set.

We make our new function

We make our new function

$$f: \Sigma^{*n} \to \mathbb{R}^{p(d+1)}$$

We make our new function

$$f: \mathbf{\Sigma}^{*n} \to \mathbb{R}^{\mathbf{p}(d+1)}$$

$$f: \mathbf{\Sigma}^{*n} \to \mathbb{R}^{\mathbf{p}(d+1)}$$

Connectedness < Dimension

$$f: \mathbf{\Sigma}^{*n} \to \mathbb{R}^{\mathbf{p}(d+1)}$$

$$n\left(\frac{p}{q}-c+2\right)-2<$$
 Dimension

$$f: \mathbf{\Sigma}^{*n} \to \mathbb{R}^{\mathbf{p}(d+1)}$$

$$n\left(\frac{p}{q}-c+2\right)-2< p(d+1)$$

$$f: \mathbf{\Sigma}^{*n} \to \mathbb{R}^{\mathbf{p}(d+1)}$$

$$n\left(\frac{p}{q}-c+2\right)-2 < p(d+1)$$

$$n\left(\frac{1}{q}-\frac{c-2}{p}\right)-\frac{2}{p} < d+1$$

$$f: \mathbf{\Sigma}^{*n} \to \mathbb{R}^{p(d+1)}$$

$$n\left(\frac{p}{q} - c + 2\right) - 2 < p(d+1)$$

$$n\left(\frac{1}{q} - \frac{c-2}{p}\right) - \frac{2}{p} < d+1$$

$$n\left(\frac{1}{q}\right) \le d+1$$

$$f: \mathbf{\Sigma}^{*n} \to \mathbb{R}^{\mathbf{p}(d+1)}$$

$$n\left(\frac{p}{q} - c + 2\right) - 2 < p(d+1)$$

$$n\left(\frac{1}{q} - \frac{c-2}{p}\right) - \frac{2}{p} < d+1$$

$$n \le q(d+1)$$

$$f: \mathbf{\Sigma}^{*n} o \mathbb{R}^{\mathbf{p}(d+1)}$$
 $n \le q(d+1)$

$$f: \mathbf{\Sigma}^{*n} o \mathbb{R}^{\mathbf{p}(d+1)}$$
 $n \le q(d+1)$

This proves the theorem if $n \ge q(d+1)+1$

Construction of Σ

Construction of Σ

Gaps have at least q-1 vertices

This complex is not connected enough!

It has maximal faces of dimension $\sim \frac{p}{2q-1}$

Idea: Take the faces of dimension $\sim \frac{p}{q}$ and their subsets.

This allows us to prove a topological Tverberg theorem with q(d+1)+1 vertices

 C_p^a - Subsets of [p] that can be extended to a face with at least a vertices

 C_p^a - Subsets of [p] that can be extended to a face with at least a vertices - **cyclic**

 C_p^a - Subsets of [p] that can be extended to a face with at least a vertices - **cyclic**

 L_p^a - Subsets of [p] that can be extended to a face with at least a vertices

 C_p^a - Subsets of [p] that can be extended to a face with at least a vertices - **cyclic**

 L_p^a - Subsets of [p] that can be extended to a face with at least a vertices - **Linear**

 $C_9^3, q = 3$

 C_{aq}^{a} is the union of a disjoint simplices.

 C_{aq+1}^{a} is a triangulation of a disk bundle.

Theorem. $C_{(a+1)q+1}^a$ is at least (a-2)-connected.

$$C_p^a\mapsto L_{p-2q+1}^{a-1}$$

4□▶ 4₫▶ 4½▶ 4½▶ ½ 900

₱▶ **4 3** ▶ **4 3** ▶ **4 3** ▶ **4 3** ▶ **4**

$$C_p^a\mapsto L_{p-2q+1}^{a-1}$$

₽ 99€

A final application of the german trick finishes the proof.

