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(Soberón, Tang 2020+)
For any 2n + 1 points on the plane, there exists a Hamiltonian cycle
whose induced disks intersect



Now, the main topic.

Joint work with Florian Frick.
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For any continuous map f : ∆(q−1)(d+1) → Rd , are there q
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(Barjmóczy, Bárány, 1979) Yes! - For q = 2
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For any continuous map f : ∆q(d+1)−1 → Rd , are there q vertex-disjoint
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(Frick, Soberón, 2020+)
For any continuous map f : ∆q(d+1)−1 → Rd , there are q vertex-disjoint
faces of ∆q(d+1)−1 whose images intersect.
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Suppose q + 1 is a prime power
and we have q(d + 1) points
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We get a map [q]∗n →
!
Rd+1

"q

Do we ever have (p1, p2, p3) = (x , x , x) for some x?
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(Dold 1983)
If X and Y have free actions of a group G , X is at
least n-connected, and Y is at most n-dimensional,
then there exist no continuous equivariant map
X →G Y .
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[q]∗n is Highly connected.
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Assign to each vertex a face of a simplicial complex Σ.



New configuration space: Σ∗n

◮ Σ must have a free action of Zp.

◮ Σ must be highly connected.

◮ Σ must have a large independent set.



New configuration space: Σ∗n

◮ Σ must have a free action of Zp.

◮ Σ must be highly connected.

◮ Σ must have a large independent set.



New configuration space: Σ∗n

◮ Σ must have a free action of Zp.

◮ Σ must be highly connected.

◮ Σ must have a large independent set.



New configuration space: Σ∗n

◮ Σ must have a free action of Zp.

◮ Σ must be highly connected.

◮ Σ must have a large independent set.



Sparse, highly connected, symmetric



Sparse, highly connected, symmetric

⌃
Highly

Connected

Large

Independent

Set



Sparse, highly connected, symmetric

⌃
Highly

Connected

Large

Independent

Set

q vertices



Sparse, highly connected, symmetric

⌃
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q vertices
at least

⇣
p
q � c

⌘
-connected
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f : Σ∗n → Rp(d+1)

Connectedness < Dimension



f : Σ∗n → Rp(d+1)

n

#
p

q
− c + 2

$
− 2 < Dimension



f : Σ∗n → Rp(d+1)

n

#
p

q
− c + 2

$
− 2 < p(d + 1)



f : Σ∗n → Rp(d+1)

n

#
p

q
− c + 2

$
− 2 < p(d + 1)

n

#
1

q
− c − 2

p

$
− 2

p
< d + 1



f : Σ∗n → Rp(d+1)

n

#
p

q
− c + 2

$
− 2 < p(d + 1)

n

#
1

q
− c − 2

p

$
− 2

p
< d + 1

n

#
1

q

$
≤ d + 1



f : Σ∗n → Rp(d+1)

n

#
p

q
− c + 2

$
− 2 < p(d + 1)

n

#
1

q
− c − 2

p

$
− 2

p
< d + 1

n ≤ q(d + 1)



f : Σ∗n → Rp(d+1)

n ≤ q(d + 1)
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n ≤ q(d + 1)

This proves the theorem if n ≥ q(d + 1) + 1
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Gaps have at least q − 1 vertices



This complex is not connected enough!



It has maximal faces of dimension ∼ p
2q−1



Idea: Take the faces of dimension ∼ p
q and their subsets.



This allows us to prove a topological Tverberg theorem
with q(d + 1) + 1 vertices
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C 3
9 , q = 3

C a
aq is the union of a disjoint simplices.
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C 3
10, q = 3

C a
aq+1 is a triangulation of a disk bundle.





Theorem. C a
(a+1)q+1 is at least (a − 2)-connected.
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C a
p &→ La−1

p−2q+1 Lrs is

%
empty or

(r − 2)− connected





A final application of the german trick finishes the proof.



Assign faces of

⌃

to each vertex


