Optimal spherical configurations, majorization and f-designs

Oleg R. Musin

UTRGV & MIPT

Majorization

Let $A=(a_1,\ldots,a_n)$ be an arbitrary sequence of real numbers. $A_{\uparrow}=(a_{(1)},\ldots,a_{(n)})$ denote a permutation of elements of A in increasing order: $a_{(1)}\leq a_{(2)}\leq \ldots \leq a_{(n)}$.

$$A = (a_1, \ldots, a_n) \text{ and } B = (b_1, \ldots, b_n).$$

A majorizes B, $A \triangleright B$, if for all k = 1, ..., n

$$a_{(1)} + \ldots + a_{(k)} \ge b_{(1)} + \ldots + b_{(k)}.$$

Remark. In A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Application it is called a weak majorization.

Jensen's inequlity

$$A := (a_1, \ldots, a_m), \quad a_i \in \mathbb{R}$$

$$\bar{A} = (\bar{a}, \dots, \bar{a}), \text{ where } \bar{a} := \frac{a_1 + \dots + a_m}{m}$$

We have $\bar{A} \triangleright A$.

If $s \geq \bar{a}$, then

$$(s,\ldots,s)\rhd(\bar{a},\ldots,\bar{a})\rhd(a_1,\ldots,a_m)$$

Jensen's inequality -I

Let f be a **convex** function. Then

$$\frac{f(a_1)+\ldots+f(a_m)}{m}\geq f(\bar{a}).$$

Jensen's inequality - II

Let $s \ge (a_1 + \ldots + a_m)/m$. Then for every **convex and decreasing** function f:

$$\frac{f(a_1)+\ldots+f(a_m)}{m}\geq f(s).$$

The majorization (or Karamata) inequality

Theorem. Let f(x) be a convex and decreasing function. If $A \triangleright B$ then we have

$$f(a_1)+\ldots+f(a_n)\leq f(b_1)+\ldots+f(b_n).$$

Moreover, $A \triangleright B$ if and only if for all convex decreasing functions g we have

$$g(a_1)+\ldots+g(a_n)\leq g(b_1)+\ldots+g(b_n).$$

Potential energy E_f

Let S be an arbitrary set. Let $\rho: S \times S \to D \subset \mathbb{R}$ be any symmetric function. Then for a given convex decreasing function $f: D \to \mathbb{R}$ and for every finite subset $X = \{x_1, \dots x_m\}$ of S we define the potential energy $E_f(X)$ as

$$E_f(X) := \sum_{1 \le i < j \le m} f(\rho(x_i, x_j)).$$

Generalized Thomson's Problem

Generalized Thomson's Problem. For given S, ρ, f and m find all $X \subset S$ with |X| = m such that $E_f(X)$ is the minimum of E_f over the set of all m-element subsets of S.

The majorization theorem for potentials

$$R_{\rho}(X) := \{ \rho(x_1, x_2) \dots, \rho(x_1, x_m), \dots, \rho(x_{m-1}, x_m) \}.$$

Theorem

Let X and Y be two m-subsets of S. Suppose $R_{\rho}(X) \rhd R_{\rho}(Y)$. Then for every convex decreasing function f we have $E_f(X) \leq E_f(Y)$.

M and M_f – sets

Definition

We say that $X \in S^m = S \times ... \times S$ is an M-set in S with respect to ρ if for any $Y \in S^m$ we have that either $R_{\rho}(X) \rhd R_{\rho}(Y)$, or $R_{\rho}(X)$ and $R_{\rho}(Y)$ are incomparable. Let $M(S, \rho, m)$ denote the set of all M-sets in S of cardinality m.

Definition

Let $f: D \to \mathbb{R}$ be a convex decreasing function. Let $V_f = \inf_{Y \in S^m} E_f(Y)$. Let $M_f(S, \rho, m)$ denote the set of all $X \in S^m$ such that $E_f(X) = V_f$.

M and M_f – sets

Theorem

Let S be a compact topological space and $\rho: S \times S \to D \subset \mathbb{R}$ be a symmetric continuous function. Let $f: D \to \mathbb{R}$ be a strictly convex decreasing function. Then $M_f(S, \rho, m)$ is non-empty and $M_f(S, \rho, m) \subseteq M(S, \rho, m)$.

Theorem

Let $\rho: S \times S \to D \subset \mathbb{R}$ be a symmetric function and $h: D \to \mathbb{R}$ be a convex increasing function. Then $M(S, \rho, m) \subseteq M(S, h(\rho), m)$.

Riesz potential

Let $X = \{p_1, \dots, p_m\}$ be a subset of \mathbb{S}^{n-1} that consists of distinct points. Then the *Riesz t-energy* of X is given by

$$E_t(X) := \sum_{i < j} \frac{1}{||p_i - p_j||^t}, t > 0, \quad E_0(X) := \sum_{i < j} \log \left(\frac{1}{||p_i - p_j||} \right).$$

Corollary

Let $t \ge 0$. If $X \subset \mathbb{S}^{n-1}$ gives the minimum of E_t in the set of all m-subsets of \mathbb{S}^{n-1} , then $X \in M(\mathbb{S}^{n-1}, r_s, m)$ for all s > -t.

Minimums of the Riesz potential

Note that for t=0 minimizing E_t is equivalent to maximizing $\prod\limits_{i\neq j}||p_i-p_j||)$, which is Smale's 7^{th} problem. For t=1 we obtain the Thomson problem, and for $t\to\infty$ the minimum Riesz energy problem transforms into the Tammes problem.

Corollary

Let $t \geq 0$. If $X \subset \mathbb{S}^{n-1}$ gives the minimum of E_t in the set of all m-subsets of \mathbb{S}^{n-1} , then $X \in M(\mathbb{S}^{n-1}, r_s, m)$ for all s > -t.

$$S = \mathbb{S}^{n-1} \subset \mathbb{R}^n$$

$$x, y \in \mathbb{S}^{n-1}$$
, $r(x, y) = ||x - y||$, $\varphi(x, y) = 2\arcsin(||x - y||/2)$.

Definition

For any $s \in \mathbb{R}$ denote

$$r_s(x,y) := \begin{cases} r^s(x,y), & s > 0 \\ \log r(x,y), & s = 0 \\ -r^s(x,y), & s < 0 \end{cases}$$

Corollary

- (i) $M(\mathbb{S}^{n-1}, r_s, m) \subset M(\mathbb{S}^{n-1}, r_t, m)$ for all $s \leq t$;
- (ii) $M(\mathbb{S}^{n-1}, r_s, m) \subset M(\mathbb{S}^{n-1}, \varphi, m)$ for all $s \leq 1$.

$M(\mathbb{S}^1, \varphi, m)$

Theorem

 $M(\mathbb{S}^1, \varphi, m)$ consists of regular polygons with m vertices.

This theorem implies that $M(\mathbb{S}^1, r_1, m)$ consists of regular polygons.

However, the set $M(\mathbb{S}^1, r_2, m), m \geq 4$, is much larger. In fact, $M(\mathbb{S}^1, r_2, 4)$ consists of quadrilaterals with sides (in angular measure) $(2\pi - 3\alpha, \alpha, \alpha, \alpha)$, where $\pi/2 \leq \alpha \leq 2\pi/3$.

Optimality of regular simplices

Theorem

Let $s \le 2$. Then $M(\mathbb{S}^{n-1}, r_s, n+1)$ consists of regular simplices.

Open problem. It is easy to see that $M(\mathbb{S}^{n-1}, \varphi, n+1) \neq M(\mathbb{S}^{n-1}, r_2, n+1)$ for $n \geq 3$.

I think that $M(\mathbb{S}^2, \varphi, 4)$ consists of vertices of tetrahedrons $\Delta_{a,\theta}$ with $a \in [0, 1/\sqrt{3}]$ and $0 < \theta \le \pi/2$.

Here $\Delta_{a,\theta}$ is a two-parametric family of tetrahedrons ABCD in \mathbb{S}^2 such that its opposite edges AC and BD are of the same lengths and the angle between them is θ . Let X be the midpoint of AC and Y be the midpoint of BD. Then X, Y and O (the center of \mathbb{S}^2) are collinear. a = |OX| = |OY|.

Optimal constrained (n + k)-sets

Theorem

Let $2 \le k \le n$ and $s \le 2$. Then $M(\mathbb{B}^n, r_s, \sqrt{2}, n+k) = M(\mathbb{S}^{n-1}, r_s, \sqrt{2}, n+k)$ and this set consists of k orthogonal to each other regular d_i -simplexes S_i such that all $d_i \ge 1$ and $d_1 + \ldots + d_k = n$.

This theorem follows from the above and Wlodek Kuperberg theorems.

Spherical three-point M-sets

$$(1-t)^z + 2^{z-1}(1-t^2)^z = \left(\frac{3}{2}\right)^{z+1}, \ z = \frac{s}{2}.$$
 (1)

For all s this equation has a solution t = -1/2. If

$$4 > s \ge s_0 := \log_{4/3}(9/4) \approx 2.8188,$$

then (1) has one more solution $t_s \in (-1, -1/2)$.

$$t_{s_0} = -1, \quad t_4 = -1/2,$$

Spherical three-point M-sets

Theorem

There are three cases for $M := M(\mathbb{S}^1, r_s, 3)$

- 1 If $s \leq \log_{4/3}(9/4)$, then M contains only regular triangles.
- 2 If $\log_{4/3}(9/4) < s < 4$, then M consists of regular triangles and triangles with central angles $(\alpha, \alpha, 2\pi 2\alpha)$, where $\alpha \in (\arccos(t_s), \pi]$.
- If $s \ge 4$, then M consists of regular triangles and triangles with central angles $(\alpha, \alpha, 2\pi 2\alpha)$, $\alpha \in [2\pi/3, \pi]$.

Spherical four-point M-sets

 $M(\mathbb{S}^1, \varphi, 4)$ contains only squares. Then $M(\mathbb{S}^1, r_s, 4)$ with $s \leq 1$ also contains only squares.

It is an interesting problem to find $M(\mathbb{S}^1, r_s, 4)$ for all s.

It can be proven that $M(\mathbb{S}^1, r_2, 4)$ consists of quadrilaterals inscribed into the unit circle with central angles $(\alpha, \alpha, \alpha, 2\pi - 3\alpha)$, where $\pi/2 \le \alpha \le 2\pi/3$.

 $M(\mathbb{S}^2, r_s, 4)$ with $s \leq 2$ contains only regular tetrahedrons.

The case s > 2 is open?

Spherical five-point M-sets

 $M(\mathbb{S}^1, \varphi, 5)$ and $M(\mathbb{S}^1, r_s, 5)$ with $s \leq 1$ contain only regular pentagons.

 $M(\mathbb{S}^2, r_s, \sqrt{2}, 5)$, $s \leq 2$, contains only triangular bi-pyramid (TBP). The same result holds for $M(\mathbb{S}^2, \varphi, \sqrt{2}, 5)$.

The last known case is $M(\mathbb{S}^3, r_s, 5)$ with $s \le 2$ that contains only regular 4–simplexes.

It is a very interesting open problem to find $M(\mathbb{S}^2, r_s, 5)$.

For any t the global minimizer of the Riesz energy R_t of 5 points lies in $M(\mathbb{S}^2, r_s, 5)$ for any s.

It is proved that the TBP is the minimizer of R_t for t=0 [Dragnev et al] and for t=1,2 [Schwartz]. Note that the TBP is not the global minimizer for R_t when t>15.04081

Definition of f-design

 $P = \{p_1, \dots, p_m\} \subset \mathbb{S}^{n-1}$. Define the k-th moment of P:

$$M_k(P) := \sum_{i=1}^m \sum_{j=1}^m G_k^{(n)}(t_{i,j}), \quad t_{i,j} := p_i \cdot p_j = \cos(\varphi(p_i, p_j))$$

 $M_k(P) \ge 0$ for all k = 1, 2, ...

Definition

$$P = \{p_1, \ldots, p_m\} \subset \mathbb{S}^{n-1}. \ D(P) := \{p_i \cdot p_j, i \neq j\}.$$

$$f(t) = \sum_{k} f_{k} G_{k}^{(n)}(t)$$
. P is an f-design if

1 For all
$$k > 0$$
 with $f_k \neq 0$ we have $M_k(P) = 0$;

2
$$D(P) \subset Z_f$$
, where $Z_f := \{t \in [-1,1) | f(t) = 0\}$.

We say that an f-design is of degree d if deg f = d.

Delsarte's bound and f-designs

Lemma

Let $f(t) = \sum_k f_k G_k^{(n)}(t) \in C([-1,1])$. If there is an f-design in \mathbb{S}^{n-1} of cardinality m, then $f(1) = mf_0$.

Theorem

Let $f(t) = \sum_k f_k G_k^{(n)}(t) \in C([-1,1])$ with all $f_k \geq 0$. Let $P \subset \mathbb{S}^{n-1}$ with |P| = m is such that $D(P) \subset Z_f$. Then P is an f-design if and only if $f(1) = mf_0$.

Spherical f-designs and M-sets

Theorem

Let $f(t) = \sum_{k} f_k G_k^{(n)}(t)$ be a function on [-1,1] with all $f_k \ge 0$. Then any f-design in \mathbb{S}^{n-1} is an M-set with $\rho(x,y) = -f(x \cdot y)$.

Open problem. Consider f with all $f_k \ge 0$ and $f(1) = mf_0$. By the theorem, if $D(P) \subset Z_f$ then P is an f-design and $P \in M(\mathbb{S}^{n-1}, -f, m)$.

It is easy to prove that if $Y \in M(\mathbb{S}^{n-1}, -f, m)$, then $D(Y) \subset Z_f$.

The question: is Y isomorphic to P?

Spherical τ - and f-designs

P is a τ -design if and only if $M_k(P) = 0$ for all $k = 1, 2, ..., \tau$

Theorem

If $P \subset \mathbb{S}^{n-1}$ is a τ -design and $|D(P)| \leq \tau$, then P is an f-design of degree τ with

$$f(t) = g(t) \prod_{x \in D(P)} (t - x), \quad \deg g \le \tau - |D(P)|.$$

Spherical two–distance sets and f–designs

Theorem

Let f(t) = (t - a)(t - b) and $a + b \neq 0$. Then P in \mathbb{S}^{n-1} is an f-design if and only if P is a two-distance 2-design.

If b = -a then f-designs are equiangular lines sets. There is a correspondence between f-designs of degree 2 and strongly regular graphs.

Let Λ_n be the set of points $e_i + e_j$, $1 \le i < j \le n+1$ in \mathbb{R}^{n+1} . In fact, Λ_n is a maximal f-design of degree 2. Are there other maximal f-designs with a + b > 0 of degree $d \ge 2$?

Every graph G can be embedded as a spherical two-distance set. What graphs can be embedded as f-designs?

THANK YOU