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Elekes and Erdős

Elekes and Erdős proved that for any triangle, T, there are n-element planar point 
sets with O(n2) triangles similar to T.

It was proved shortly after that if the number of equilateral triangles is at least 
(1/6+ε)n2 then the pointset should contain large parts of a triangular lattice.

On the other hand, no lattice is guaranteed by cn2 similar copies if c<1/6.



Laczkovich-Ruzsa (1997)

“We investigate the maximal number S(P, n) of subsets of a set of n elements 
homothetic to a fixed set P. Elekes and Erdős proved that S(P, n) > cn2 if |P| = 3 or 
the elements of P are algebraic. For |P| ≥ 4 we show that S(P, n) > cn2 if and only if 
every quadruple in P has an algebraic cross ratio.”



Structural results for planar sets with many similar subsets 
(Abrego, Elekes, Fernandes-Merchant (2002))
TT



Inversion points of triangles

G is the inversion point of the ABC triangle.

C’ is the reflection point of C about the AB side
and G is the image of C’ after inversion about
the circle with diameter AB.

Using complex numbers: 

G=D-(A-B)2/2(A+B-2C)



Some special cases

● Right triangles

● Linear triples

A                 C        B                       I



Structure induced by many similar triangles

I is the common inversion point of two similar triangles

Two triangles sharing 
their inversion points



A Key Lemma

Lemma: There is a universal constant, c>0, such that the following holds. Let us 
suppose that n points in the plane span at least n11/6 triangles, similar to a given 
triangle T. Then for any selection of n11/6 triangles similar to T, there will be at least 
two vertex disjoint triangles sharing the same inversion point.



Katz-Tao

This result on similar triangles is a “geometrization” of a very nice paper by Netz 
Katz and Terry Tao:

Bounds on arithmetic projections, and applications to the Kakeya conjecture, 
Mathematical Research Letters, Volume 6 (1999) Pages: 625-630.

“Let A, B, be finite subsets of a torsion-free abelian group, and let G⊂A×B be such 
that #A,#B,#{a+b:(a,b)∈G}≤N. We consider the question of estimating the quantity 
#{a−b:(a,b)∈G}.”

In our settings a+b is vertex C and a-b=Inv(C).



Structural results for planar sets with many similar subsets 
(Abrego, Elekes, Fernandes-Merchant (2002))
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Pentagons in graphs
Bollobás and Győri: If a graph on n vertices has more than Cn3/2 triangles then it 
contains pentagons.

Füredi and Özkahya: If a three-uniform hypergraph on n vertices has at least Cn3/2 

edges then it contains a Berge pentagon.

Related questions were studied by Alon and Shikhelman and by Kostochka, 
Mubayi, and Verstraete, and later by Ergemlidze, Methuku, Salia, and Győri.

Bárány and Füredi analysed pointsets with many almost similar triangles. 



Number of pentagons in linear 3-graphs

If a three-uniform linear hypergraph on n vertices has at least m edges, where 

n3/2 << m << n2

then it contains at least m6/n7 (Berge) pentagons.

Picture from Simonovits-Szemerédi, Embedding Graphs into Larger Graphs: Results, Methods, and Problems





Counting Pentagons
Given a three-uniform hypergraph, H, and vertex u, define the 
bowtie graph of u, written B(u), as the set of pairs xy such that there 
are edges uvw and wxy in H

u

v

w

x

y

Let b(u) = |B(u)|

If H has m edges, then by averaging

m2/n ≤ Σ b(u)



3 edge Paths 
Let p3(u) be the number of 3-edge paths in B(u). Then by the Blakley-Roy* 
inequality

p3(u) ≥ n (2b(u)/n - 3)3

# pentagons in H ≥ ⅕ Σu p3(u) 

≥ ⅕ Σu n (2b(u)/n - 3)3

          (n large)     ≥ (1/n2) Σu b(u)3

(Σ b(u) > m2/n) ≥ (1/n2) n(m2/n2)3

= m6/n7 

*Mulholland-Smith (1959)/ 
Atkinson-Watterson-Moran (1959)/ 
Blakley-Roy (1965) inequality



Five edges (similar triangles)

T1 A1 B1 C1

T2 A2 B2 C2

T3 A3 B3 C3

T4 A4 B4 C4

T5 A5 B5 C5

A

B

C



Five edges forming a pentagon

A1=A5, A2=A3, B1=B2, C3=C4, B4=B5

Fixed vertices: A4, B3, C1, C2

T1 A1 B1 C1

T2 A2 B2 C2

T3 A3 B3 C3

T4 A4 B4 C4

T5 A5 B5 C5

A
B

C





Pentagons with four pinned vertices

We want to show that the inverse of C5 in T5 is determined by the four fixed 
vertices. Since the triangles are similar, we can express CI as

CI=(AI+BI)/2+z(AI-BI)/2, where z=reiΘ , and

inv(C5)=(A5+B5)/2+(A5-B5)/2z,

for I=1,2,3,4,5.



Inv(C5) is determined by the four pinned vertices

The triangles are similar, so vertex C can be expressed by A, B, and a constant 
parameter. 

CI=(AI+BI)/2+z(AI-BI)/2, where z=reiΘ , and

inv(C5)=(A5+B5)/2+(A5-B5)/2z=(A5+B4)/2+(A5-B4)/2z

After some calculations … we will see that 

(A3+B4)/2+(A3-B4)/2z=(A4+B3)/2+(A4-B3)/2z=*

*+C1-C2=inv(C5)







The Key Lemma we wanted to prove

Lemma: There is a universal constant, c>0, such that the following holds. Let us 
suppose that n points in the plane span at least n11/6 triangles, similar to a given 
triangle T. Then for any selection of n11/6 triangles similar to T, there will be at least 
two vertex disjoint triangles sharing the same inversion point.



Proof

If on n points we have at least m>Cn11/6 triangles, similar to a given triangle T, then 
the number of Berge pentagons is >n4, so there are at least two pentagons with 
the same A4, B3, C1, C2 vertices. Then in both pentagons Inv(C5) is the same 
point.



Five edges forming a pentagon

A1=A5, A2=A3, B1=B2, C3=C4, B4=B5

Fixed vertices: A4, B3, C1, C2

T1 A1 B1 C1

T2 A2 B2 C2

T3 A3 B3 C3

T4 A4 B4 C4

T5 A5 B5 C5

A
B

C



Elekes and Erdős

Elekes and Erdős proved that for any triangle, T, there are n-element planar point 
sets with O(n2) triangles similar to T.

It was proved shortly after that if the number of equilateral triangles is at least 
(1/6+ε)n2 then the pointset should contain large parts of a triangular lattice.

On the other hand, no lattice is guaranteed by cn2 similar copies if c<1/6.



Corollaries 

There are some interesting corollaries of the Key Lemma and pentagon counting.

1. For every k>3 and c>0 there is a constant, C, such that if n points span at least 
cn2 similar triangles, then it is a subset of a pointset of size Cn which spans at 
least cn2 similar k-gons.

2. The next question was Problem 25. in the 12th Gremo Workshop on Open 
Problems 2014, Val Sinestra (GR), Switzerland, Jun 30 - Jul 4, 2014.



Problem 25.

Given an [n]x[n] integer grid. We are choosing grid points as long as there is no 
square among the selected points.

Claim: At least n12/11 points

should be selected before stuck.
o

o

o

o



Proof of the Claim

When we can’t add a new grid point, then every empty place is “covered” by a right 
isosceles triangle, i.e. every empty grid point is the inversion point of the right 
angle vertex of a right isosceles triangle. Let us suppose that the number of 
selected points is m. By considering a subset of the triangles we can assume that 
every empty grid point is the inversion point of exactly one triangle. The number 
of empty grid points is about n2 (or we are done). But then, from our Key Lemma 
we know that the number of the right isosceles triangles, which is about n2, is at 
most m11/6 . So, we have  m>n12/11  as we wanted. 



Problem 25.

Given an [n]x[n] integer grid. We are choosing grid points at random as long we 
can such that there is no square among the selected points.

Claim (Jozsi Balogh, Igor Araujo): The random greedy process stops after 
selecting not more than n191/86 points almost surely. 

(Based on Bennett-Bohman)



Larger polygons

Using more advanced calculations one can prove a better bound on quadrilaterals.

Lemma: There is a universal constant, c>0, such that the following holds. Let us 
suppose that n points in the plane span at least n7/4 quadrilaterals, similar to a 
given quadrilateral Q. Then for any selection of n7/4 triangles similar to Q, there will 
be at least two vertex disjoint triangles sharing the same “inversion” point. 

Are there better bounds for pentagons?



Open Problems

We gave a bound on the number of pentagons in 3-uniform, linear hypergraphs. Is 
it sharp? In a random linear hypergraph we have more pentagons in the range we 
used.

Is there a way to use structure given by the geometric settings, instead of working 
with arbitrary linear hypergraphs?

What is the answer to Problem 25? What is the smallest maximal square-free 
subset of [n]x[n]? What is the largest? When will the random greedy random 
process stop? (Between n4/3 and n191/86 (Igor Araujo))


