On the Zarankiewicz problem for graphs with bounded VC-dimension

Oliver Janzer (ETH Zurich)

Joint work with Cosmin Pohoata (Yale)

Definition

The Zarankiewicz problem asks for the maximum possible number of edges in a $K_{t,t}$ -free bipartite graph with *n* vertices on each side.

Definition

The Zarankiewicz problem asks for the maximum possible number of edges in a $K_{t,t}$ -free bipartite graph with *n* vertices on each side. Here *t* is a fixed positive integer.

Definition

The Zarankiewicz problem asks for the maximum possible number of edges in a $K_{t,t}$ -free bipartite graph with *n* vertices on each side. Here *t* is a fixed positive integer. We write $ex(n, K_{t,t})$ for this number.

Definition

The Zarankiewicz problem asks for the maximum possible number of edges in a $K_{t,t}$ -free bipartite graph with *n* vertices on each side. Here *t* is a fixed positive integer. We write $ex(n, K_{t,t})$ for this number.

Theorem (Kővári–Sós–Turán '54)

For every $t \geq 2$,

$$\exp(n, K_{t,t}) \leq c_t n^{2-1/t}$$

for some constant c_t depending only on t.

Definition

The Zarankiewicz problem asks for the maximum possible number of edges in a $K_{t,t}$ -free bipartite graph with *n* vertices on each side. Here *t* is a fixed positive integer. We write $ex(n, K_{t,t})$ for this number.

Theorem (Kővári–Sós–Turán '54)

For every $t \geq 2$,

$$\exp(n, K_{t,t}) \leq c_t n^{2-1/t}$$

for some constant c_t depending only on t.

This bound is known to be tight for t = 2 and t = 3.

Definition

The Zarankiewicz problem asks for the maximum possible number of edges in a $K_{t,t}$ -free bipartite graph with *n* vertices on each side. Here *t* is a fixed positive integer. We write $ex(n, K_{t,t})$ for this number.

Theorem (Kővári–Sós–Turán '54)

For every $t \geq 2$,

$$\exp(n, K_{t,t}) \leq c_t n^{2-1/t}$$

for some constant c_t depending only on t.

This bound is known to be tight for t = 2 and t = 3. However, for t = 4, the best known lower bound is

$$ex(n, K_{4,4}) \ge ex(n, K_{3,3}) = \Omega(n^{5/3}).$$

Theorem (Ball-Pepe '12)

$$ex(n, K_{5,5}) = \Omega(n^{7/4}).$$

Oliver Janzer (ETH Zurich) The Zarankiewicz problem for bounded VC-dimension

- < E > < E

Theorem (Ball-Pepe '12)

$$ex(n, K_{5,5}) = \Omega(n^{7/4}).$$

This gives the best known bound also for $ex(n, K_{6,6})$.

< ∃ > < ∃ >

Theorem (Ball-Pepe '12)

$$ex(n, K_{5,5}) = \Omega(n^{7/4}).$$

This gives the best known bound also for $ex(n, K_{6,6})$.

Theorem (Bohman–Keevash '10) $ex(n, K_{t,t}) = \Omega(n^{2-\frac{2}{t+1}} (\log n)^{1/(t^2-1)}).$ Theorem (Ball-Pepe '12)

$$ex(n, K_{5,5}) = \Omega(n^{7/4}).$$

This gives the best known bound also for $ex(n, K_{6,6})$.

Theorem (Bohman-Keevash '10)

$$\exp(n, K_{t,t}) = \Omega(n^{2-\frac{2}{t+1}} (\log n)^{1/(t^2-1)}).$$

Theorem (Alon–Kollár–Rónyai–Szabó '99)

For $s \ge (t - 1)! + 1$,

$$\exp(n, K_{t,s}) = \Theta(n^{2-1/t}).$$

何 ト イヨ ト イヨト

Let $\mathcal F$ be a set system on ground set V.

Image: A marked black

Let \mathcal{F} be a set system on ground set V. We say that a subset $S \subset V$ is shattered by \mathcal{F} if for every $T \subset S$ there exist some $A \in \mathcal{F}$ with $T = A \cap S$.

Let \mathcal{F} be a set system on ground set V. We say that a subset $S \subset V$ is shattered by \mathcal{F} if for every $T \subset S$ there exist some $A \in \mathcal{F}$ with $T = A \cap S$. The VC-dimension of \mathcal{F} is the size of the largest set that is shattered by \mathcal{F} .

Let \mathcal{F} be a set system on ground set V. We say that a subset $S \subset V$ is shattered by \mathcal{F} if for every $T \subset S$ there exist some $A \in \mathcal{F}$ with $T = A \cap S$. The VC-dimension of \mathcal{F} is the size of the largest set that is shattered by \mathcal{F} .

We can also define the VC-dimension of a graph.

Let \mathcal{F} be a set system on ground set V. We say that a subset $S \subset V$ is shattered by \mathcal{F} if for every $T \subset S$ there exist some $A \in \mathcal{F}$ with $T = A \cap S$. The VC-dimension of \mathcal{F} is the size of the largest set that is shattered by \mathcal{F} .

We can also define the VC-dimension of a graph.

Definition (VC-dimension of a bipartite graph)

If G is a bipartite graph with parts A and B, then note that the set of neighbourhoods $\{N(b) : b \in B\}$ forms a set system on ground set A.

Let \mathcal{F} be a set system on ground set V. We say that a subset $S \subset V$ is shattered by \mathcal{F} if for every $\mathcal{T} \subset S$ there exist some $A \in \mathcal{F}$ with $\mathcal{T} = A \cap S$. The VC-dimension of \mathcal{F} is the size of the largest set that is shattered by \mathcal{F} .

We can also define the VC-dimension of a graph.

Definition (VC-dimension of a bipartite graph)

If G is a bipartite graph with parts A and B, then note that the set of neighbourhoods $\{N(b) : b \in B\}$ forms a set system on ground set A.

Define the VC-dimension of G to be the VC-dimension of this set system.

Definition (Shatter function)

For a set system ${\mathcal F}$ on ground set V, the shatter function is defined as

$$\pi_\mathcal{F}(z) = \max_{S \subset V: |S| = z} |\{A \cap S : A \in \mathcal{F}\}|.$$

• = • •

Definition (Shatter function)

For a set system ${\mathcal F}$ on ground set V, the shatter function is defined as

$$\pi_{\mathcal{F}}(z) = \max_{S \subset V: |S|=z} |\{A \cap S : A \in \mathcal{F}\}|.$$

Theorem (Sauer-Shelah)

Let \mathcal{F} be a set system with VC-dimension d. Then

$$\pi_{\mathcal{F}}(z) \leq \sum_{i=0}^d \binom{z}{i}.$$

Definition (Shatter function)

For a set system $\mathcal F$ on ground set V, the shatter function is defined as

$$\pi_{\mathcal{F}}(z) = \max_{S \subset V: |S|=z} |\{A \cap S : A \in \mathcal{F}\}|.$$

Theorem (Sauer-Shelah)

Let \mathcal{F} be a set system with VC-dimension d. Then

$$\pi_{\mathcal{F}}(z) \leq \sum_{i=0}^d \binom{z}{i}.$$

That is, $\pi_{\mathcal{F}}(z) \leq cz^d$ for some c = c(d).

The result of Fox, Pach, Sheffer, Suk and Zahl

Theorem (Fox–Pach–Sheffer–Suk–Zahl '17)

Let G be a bipartite graph with parts A and B such that |A| = mand |B| = n such that the set system $\mathcal{F} = \{N(b) : b \in B\}$ has $\pi_{\mathcal{F}}(z) \leq cz^d$. If G is $K_{t,t}$ -free, then

$$e(G) \leq c_1(mn^{1-1/d} + n),$$

where $c_1 = c_1(c, d, t)$.

Theorem (Fox–Pach–Sheffer–Suk–Zahl '17)

Let G be a bipartite graph with parts A and B such that |A| = mand |B| = n such that the set system $\mathcal{F} = \{N(b) : b \in B\}$ has $\pi_{\mathcal{F}}(z) \leq cz^d$. If G is $K_{t,t}$ -free, then

$$e(G) \leq c_1(mn^{1-1/d} + n),$$

where $c_1 = c_1(c, d, t)$.

Corollary

Let G be a $K_{t,t}$ -free bipartite graph on n + n vertices which has VC-dimension at most d. Then

$$e(G) \leq cn^{2-1/d},$$

where c = c(d, t).

• The shatter function version of the result of Fox et al. is tight for m = n.

()

- The shatter function version of the result of Fox et al. is tight for m = n.
- Indeed, as stated earlier, there exists a $K_{d,d!}$ -free bipartite graph with n + n vertices and $\Theta(n^{2-1/d})$ edges.

- The shatter function version of the result of Fox et al. is tight for m = n.
- Indeed, as stated earlier, there exists a $K_{d,d!}$ -free bipartite graph with n + n vertices and $\Theta(n^{2-1/d})$ edges.
- It is not hard to verify that for any such graph $\mathcal{F} = \{N(b) : b \in B\}$ has shatter function $\pi_{\mathcal{F}}(z) \leq cz^d$.

- The shatter function version of the result of Fox et al. is tight for m = n.
- Indeed, as stated earlier, there exists a $K_{d,d!}$ -free bipartite graph with n + n vertices and $\Theta(n^{2-1/d})$ edges.
- It is not hard to verify that for any such graph $\mathcal{F} = \{N(b) : b \in B\}$ has shatter function $\pi_{\mathcal{F}}(z) \leq cz^d$.
- Indeed, for any S ⊂ A of size z, the number of vertices b ∈ B with |N(b) ∩ S| ≥ d is less than (^z_d) ⋅ d!.

- The shatter function version of the result of Fox et al. is tight for m = n.
- Indeed, as stated earlier, there exists a $K_{d,d!}$ -free bipartite graph with n + n vertices and $\Theta(n^{2-1/d})$ edges.
- It is not hard to verify that for any such graph $\mathcal{F} = \{N(b) : b \in B\}$ has shatter function $\pi_{\mathcal{F}}(z) \leq cz^d$.
- Indeed, for any S ⊂ A of size z, the number of vertices b ∈ B with |N(b) ∩ S| ≥ d is less than ^z_d · d!.
- (It is because for any T ⊂ S of size d there are less than d! common neighbours of T.)

- The shatter function version of the result of Fox et al. is tight for m = n.
- Indeed, as stated earlier, there exists a $K_{d,d!}$ -free bipartite graph with n + n vertices and $\Theta(n^{2-1/d})$ edges.
- It is not hard to verify that for any such graph $\mathcal{F} = \{N(b) : b \in B\}$ has shatter function $\pi_{\mathcal{F}}(z) \leq cz^d$.
- Indeed, for any S ⊂ A of size z, the number of vertices b ∈ B with |N(b) ∩ S| ≥ d is less than (^z_d) ⋅ d!.
- (It is because for any T ⊂ S of size d there are less than d! common neighbours of T.)
- Hence,

$$\pi_{\mathcal{F}}(z) \leq d! \cdot {\binom{z}{d}} + \sum_{i=0}^{d-1} {\binom{z}{i}}.$$

.

How about the VC-dimension version of their result? Is it also tight?

• • = • • = •

Our result

How about the VC-dimension version of their result? Is it also tight? It is tight for d = 2 since a $K_{2,2}$ -free bipartite graph has VC-dimension at most 2 and there exist $K_{2,2}$ -free bipartite graphs with $\Theta(n^{3/2})$ edges. How about the VC-dimension version of their result? Is it also tight?

It is tight for d = 2 since a $K_{2,2}$ -free bipartite graph has

VC-dimension at most 2 and there exist $K_{2,2}$ -free bipartite graphs with $\Theta(n^{3/2})$ edges.

However, we can improve the upper bound for all $d \ge 3$.

How about the VC-dimension version of their result? Is it also tight?

It is tight for d = 2 since a $K_{2,2}$ -free bipartite graph has

VC-dimension at most 2 and there exist $K_{2,2}$ -free bipartite graphs with $\Theta(n^{3/2})$ edges.

However, we can improve the upper bound for all $d \ge 3$.

Theorem (J.–Pohoata '20+)

Let $d \ge 3$ and t be fixed positive integers. Let G be a $K_{t,t}$ -free bipartite graph on n + n vertices which has VC-dimension at most d. Then

$$e(G)=o(n^{2-1/d}).$$

• Saying that G has VC-dimension at most d means that no set of size d + 1 is shattered.

- Saying that G has VC-dimension at most d means that no set of size d + 1 is shattered.
- That's equivalent to saying that G does not contain F(d) as an induced subgraph, where F(d) is defined as follows.

- Saying that G has VC-dimension at most d means that no set of size d + 1 is shattered.
- That's equivalent to saying that G does not contain F(d) as an induced subgraph, where F(d) is defined as follows.
- F(d) has parts X and Y where |X| = d + 1 and |Y| = 2^{d+1} and for every Z ⊂ X there is a vertex y_Z ∈ Y such that the neighbourhood of y_Z in F(d) is precisely Z.

- Saying that G has VC-dimension at most d means that no set of size d + 1 is shattered.
- That's equivalent to saying that G does not contain F(d) as an induced subgraph, where F(d) is defined as follows.
- F(d) has parts X and Y where |X| = d + 1 and |Y| = 2^{d+1} and for every Z ⊂ X there is a vertex y_Z ∈ Y such that the neighbourhood of y_Z in F(d) is precisely Z.

Figure: The graph F(2)
So it's natural to ask what we can say about ex(n, F(d)).

< ∃ → <

So it's natural to ask what we can say about ex(n, F(d)). Observe that all but one of the vertices in Y have degree at most d.

So it's natural to ask what we can say about ex(n, F(d)). Observe that all but one of the vertices in Y have degree at most d.

Theorem (Füredi '91, Alon–Krivelevich–Sudakov '03)

If H is a bipartite graph such that in one of the parts every vertex has degree at most d, then

$$\operatorname{ex}(n,H) = O(n^{2-1/d}).$$

So it's natural to ask what we can say about ex(n, F(d)). Observe that all but one of the vertices in Y have degree at most d.

Theorem (Füredi '91, Alon–Krivelevich–Sudakov '03)

If H is a bipartite graph such that in one of the parts all but at most d vertices have degree at most d, then

$$\operatorname{ex}(n,H) = O(n^{2-1/d}).$$

So it's natural to ask what we can say about ex(n, F(d)). Observe that all but one of the vertices in Y have degree at most d.

Theorem (Füredi '91, Alon–Krivelevich–Sudakov '03)

If H is a bipartite graph such that in one of the parts all but at most d vertices have degree at most d, then

$$\operatorname{ex}(n,H) = O(n^{2-1/d}).$$

Theorem (Sudakov–Tomon '20)

If H is a $K_{d,d}$ -free bipartite graph such that in one of the parts every vertex has degree at most d, then

$$\operatorname{ex}(n,H)=o(n^{2-1/d}).$$

So it's natural to ask what we can say about ex(n, F(d)). Observe that all but one of the vertices in Y have degree at most d.

Theorem (Füredi '91, Alon–Krivelevich–Sudakov '03)

If H is a bipartite graph such that in one of the parts all but at most d vertices have degree at most d, then

$$\operatorname{ex}(n,H) = O(n^{2-1/d}).$$

Theorem (Sudakov–Tomon '20)

If H is a $K_{d,d}$ -free bipartite graph such that in one of the parts every vertex has degree at most d, then

$$\operatorname{ex}(n,H)=o(n^{2-1/d}).$$

Our proof is inspired by the proof of this result.

A key lemma

We want to show that if G has at least $cn^{2-1/d}$ edges, then either A has a subset of size d + 1 which is shattered, or G has $K_{t,t}$ as a subgraph.

A key lemma

We want to show that if G has at least $cn^{2-1/d}$ edges, then either A has a subset of size d + 1 which is shattered, or G has $K_{t,t}$ as a subgraph.

Lemma

Let G be a bipartite graph with parts A and B and with minimum degree satisfying $\delta(G) \ge cn^{1-1/d}$ for some constant c > 0, and where $|A|, |B| \le n$. Let r be a constant positive integer and let $x \in B$. Then one of the following two statements must be true:

- there exists a set $R \subset N(x)$ of size r such that for every $D \subset R$ of size d, we have $|N(D)| \ge r$ or
- ② there exist $\Theta(|N(x)|^r)$ sets $R \subset N(x)$ of size r such that for every $D \subset R$ of size d, we have $N(D) \setminus \{x\} \neq \emptyset$.

伺 ト イヨ ト イヨト

A key lemma

We want to show that if G has at least $cn^{2-1/d}$ edges, then either A has a subset of size d + 1 which is shattered, or G has $K_{t,t}$ as a subgraph.

Lemma

Let G be a bipartite graph with parts A and B and with minimum degree satisfying $\delta(G) \ge cn^{1-1/d}$ for some constant c > 0, and where $|A|, |B| \le n$. Let r be a constant positive integer and let $x \in B$. Then one of the following two statements must be true:

- there exists a set $R \subset N(x)$ of size r such that for every $D \subset R$ of size d, we have $|N(D)| \ge r$ or
- ② there exist $\Theta(|N(x)|^r)$ sets $R \subset N(x)$ of size r such that for every $D \subset R$ of size d, we have $N(D) \setminus \{x\} \neq \emptyset$.

On the next slide we prove that if 1) holds, then a randomly chosen subset of R of size d + 1 is shattered with positive probability, unless G contains $K_{t,t}$.

Assume that case 1) holds from the previous slide, i.e. that for some large (compared to d and t) constant r there exist x ∈ B and R ⊂ N(x) of size r such that for every D ⊂ R of size d we have N(D) ≥ r.

- Assume that case 1) holds from the previous slide, i.e. that for some large (compared to d and t) constant r there exist x ∈ B and R ⊂ N(x) of size r such that for every D ⊂ R of size d we have N(D) ≥ r.
- Fix some $D \subset R$ of size at most d. How many vertices $z \in R$ are there such that $|N(z) \cap N(D)| \ge \frac{1}{d+1}|N(D)|$?

- Assume that case 1) holds from the previous slide, i.e. that for some large (compared to d and t) constant r there exist x ∈ B and R ⊂ N(x) of size r such that for every D ⊂ R of size d we have N(D) ≥ r.
- Fix some $D \subset R$ of size at most d. How many vertices $z \in R$ are there such that $|N(z) \cap N(D)| \ge \frac{1}{d+1}|N(D)|$?
- N(D) is a large set, so if we have many such vertices, then we can find a K_{t,t} in G.

- Assume that case 1) holds from the previous slide, i.e. that for some large (compared to d and t) constant r there exist x ∈ B and R ⊂ N(x) of size r such that for every D ⊂ R of size d we have N(D) ≥ r.
- Fix some $D \subset R$ of size at most d. How many vertices $z \in R$ are there such that $|N(z) \cap N(D)| \ge \frac{1}{d+1}|N(D)|$?
- N(D) is a large set, so if we have many such vertices, then we can find a $K_{t,t}$ in G. (That's because $ex(m, K_{t,t}) = o(m^2)$.)

- Assume that case 1) holds from the previous slide, i.e. that for some large (compared to d and t) constant r there exist x ∈ B and R ⊂ N(x) of size r such that for every D ⊂ R of size d we have N(D) ≥ r.
- Fix some $D \subset R$ of size at most d. How many vertices $z \in R$ are there such that $|N(z) \cap N(D)| \ge \frac{1}{d+1}|N(D)|$?
- N(D) is a large set, so if we have many such vertices, then we can find a $K_{t,t}$ in G. (That's because $ex(m, K_{t,t}) = o(m^2)$.)
- Hence, if we choose $S \subset R$ of size d + 1 randomly, then with positive probability we will have that $|N(z) \cap N(D)| < \frac{1}{d+1}|N(D)|$ holds for every $D \subset S$ of size at most d and every $z \in S \setminus D$.

(四) (三) (三)

- Assume that case 1) holds from the previous slide, i.e. that for some large (compared to d and t) constant r there exist x ∈ B and R ⊂ N(x) of size r such that for every D ⊂ R of size d we have N(D) ≥ r.
- Fix some $D \subset R$ of size at most d. How many vertices $z \in R$ are there such that $|N(z) \cap N(D)| \ge \frac{1}{d+1}|N(D)|$?
- N(D) is a large set, so if we have many such vertices, then we can find a $K_{t,t}$ in G. (That's because $ex(m, K_{t,t}) = o(m^2)$.)
- Hence, if we choose $S \subset R$ of size d + 1 randomly, then with positive probability we will have that $|N(z) \cap N(D)| < \frac{1}{d+1}|N(D)|$ holds for every $D \subset S$ of size at most d and every $z \in S \setminus D$.
- So, for each $D \subset S$ of size at most d, we may choose some $b_D \in B$ such that $N(b_D) \cap S = D$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Assume that case 1) holds from the previous slide, i.e. that for some large (compared to d and t) constant r there exist x ∈ B and R ⊂ N(x) of size r such that for every D ⊂ R of size d we have N(D) ≥ r.
- Fix some $D \subset R$ of size at most d. How many vertices $z \in R$ are there such that $|N(z) \cap N(D)| \ge \frac{1}{d+1}|N(D)|$?
- N(D) is a large set, so if we have many such vertices, then we can find a $K_{t,t}$ in G. (That's because $ex(m, K_{t,t}) = o(m^2)$.)
- Hence, if we choose $S \subset R$ of size d + 1 randomly, then with positive probability we will have that $|N(z) \cap N(D)| < \frac{1}{d+1}|N(D)|$ holds for every $D \subset S$ of size at most d and every $z \in S \setminus D$.
- So, for each $D \subset S$ of size at most d, we may choose some $b_D \in B$ such that $N(b_D) \cap S = D$.
- Using $S \subset N(x)$, this shows that S is shattered.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Assume now that case 2) holds, i.e. for some large r there exist Θ(|N(x)|^r) sets R ⊂ N(x) of size r such that for every D ⊂ R of size d, we have N(D) \ {x} ≠ Ø.

- Assume now that case 2) holds, i.e. for some large r there exist $\Theta(|N(x)|^r)$ sets $R \subset N(x)$ of size r such that for every $D \subset R$ of size d, we have $N(D) \setminus \{x\} \neq \emptyset$.
- Roughly speaking, two possible problems can occur:

- Assume now that case 2) holds, i.e. for some large r there exist Θ(|N(x)|^r) sets R ⊂ N(x) of size r such that for every D ⊂ R of size d, we have N(D) \ {x} ≠ Ø.
- Roughly speaking, two possible problems can occur:
 - either some subset of R of size at most d-1 has small common neighbourhood,

- Assume now that case 2) holds, i.e. for some large r there exist $\Theta(|N(x)|^r)$ sets $R \subset N(x)$ of size r such that for every $D \subset R$ of size d, we have $N(D) \setminus \{x\} \neq \emptyset$.
- Roughly speaking, two possible problems can occur:
 - either some subset of R of size at most d-1 has small common neighbourhood, or
 - the neighbourhoods of the *d*-subsets of *R* are not sufficiently disjoint that we can assign a different neighbour for each *d*-subset.

- Assume now that case 2) holds, i.e. for some large r there exist $\Theta(|N(x)|^r)$ sets $R \subset N(x)$ of size r such that for every $D \subset R$ of size d, we have $N(D) \setminus \{x\} \neq \emptyset$.
- Roughly speaking, two possible problems can occur:
 - either some subset of R of size at most d-1 has small common neighbourhood, or
 - the neighbourhoods of the *d*-subsets of *R* are not sufficiently disjoint that we can assign a different neighbour for each *d*-subset.
- In either scenario, we can argue that the number of such bad sets *R* is small.

- Assume now that case 2) holds, i.e. for some large r there exist $\Theta(|N(x)|^r)$ sets $R \subset N(x)$ of size r such that for every $D \subset R$ of size d, we have $N(D) \setminus \{x\} \neq \emptyset$.
- Roughly speaking, two possible problems can occur:
 - either some subset of R of size at most d-1 has small common neighbourhood, or
 - the neighbourhoods of the *d*-subsets of *R* are not sufficiently disjoint that we can assign a different neighbour for each *d*-subset.
- In either scenario, we can argue that the number of such bad sets *R* is small.
- For example, assume that N(D) = N(D') = {x, y} for some distinct subsets D and D' of R of size d.

.

- Assume now that case 2) holds, i.e. for some large r there exist $\Theta(|N(x)|^r)$ sets $R \subset N(x)$ of size r such that for every $D \subset R$ of size d, we have $N(D) \setminus \{x\} \neq \emptyset$.
- Roughly speaking, two possible problems can occur:
 - either some subset of R of size at most d-1 has small common neighbourhood, or
 - the neighbourhoods of the *d*-subsets of *R* are not sufficiently disjoint that we can assign a different neighbour for each *d*-subset.
- In either scenario, we can argue that the number of such bad sets *R* is small.
- For example, assume that N(D) = N(D') = {x, y} for some distinct subsets D and D' of R of size d.
- Then the number of ways to choose D ∪ D' is o(|N(x)|^{|D∪D'|}) since once we have chosen D, the vertex y is determined, and every member of D' \ D must be a neighbour of y.

Lemma

Let G be a bipartite graph with parts A and B and with minimum degree satisfying $\delta(G) \ge cn^{1-1/d}$ for some constant c > 0, and where $|A|, |B| \le n$. Let r be a constant positive integer and let $x \in B$. Then one of the following two statements must be true:

- there exists a set $R \subset N(x)$ of size r such that for every $D \subset R$ of size d, we have $|N(D)| \ge r$ or
- ② there exist $\Theta(|N(x)|^r)$ sets $R \subset N(x)$ of size r such that for every $D \subset R$ of size d, we have $N(D) \setminus \{x\} \neq \emptyset$.

Lemma

Let G be a bipartite graph with parts A and B and with minimum degree satisfying $\delta(G) \ge cn^{1-1/d}$ for some constant c > 0, and where $|A|, |B| \le n$. Let r be a constant positive integer and let $x \in B$. Then one of the following two statements must be true:

- there exists a set $R \subset N(x)$ of size r such that for every $D \subset R$ of size d, we have $|N(D)| \ge r$ or
- ② there exist $\Theta(|N(x)|^r)$ sets $R \subset N(x)$ of size r such that for every $D \subset R$ of size d, we have $N(D) \setminus \{x\} \neq \emptyset$.

Define a *d*-uniform hypergraph \mathcal{H} on vertex set N(x) such that a set $D \subset N(x)$ of size *d* is a hyperedge of \mathcal{H} if and only if $N(D) \setminus \{x\} \neq \emptyset$.

伺 ト イヨ ト イヨト

Lemma

Let G be a bipartite graph with parts A and B and with minimum degree satisfying $\delta(G) \ge cn^{1-1/d}$ for some constant c > 0, and where $|A|, |B| \le n$. Let r be a constant positive integer and let $x \in B$. Then one of the following two statements must be true:

- there exists a set $R \subset N(x)$ of size r such that for every $D \subset R$ of size d, we have $|N(D)| \ge r$ or
- ② there exist $\Theta(|N(x)|^r)$ sets $R \subset N(x)$ of size r such that for every $D \subset R$ of size d, we have $N(D) \setminus \{x\} \neq \emptyset$.

Define a *d*-uniform hypergraph \mathcal{H} on vertex set N(x) such that a set $D \subset N(x)$ of size *d* is a hyperedge of \mathcal{H} if and only if $N(D) \setminus \{x\} \neq \emptyset$. Now condition 2) is saying that \mathcal{H} contains $\Theta(|N(x)|^r)$ copies of $\mathcal{K}_r^{(d)}$.

伺 ト イヨ ト イヨ ト

By the hypergraph removal lemma, it suffices to prove that in order to destroy all copies of K_r^(d) in H, one needs to remove Θ(|N(x)|^d) hyperedges from H.

- By the hypergraph removal lemma, it suffices to prove that in order to destroy all copies of K_r^(d) in H, one needs to remove Θ(|N(x)|^d) hyperedges from H.
- Colour a *d*-set $D \subset N(x)$ green if $N(D) = \{x\}$, blue if 1 < |N(D)| < r and red if $|N(D)| \ge r$.

- By the hypergraph removal lemma, it suffices to prove that in order to destroy all copies of K_r^(d) in H, one needs to remove Θ(|N(x)|^d) hyperedges from H.
- Colour a *d*-set $D \subset N(x)$ green if $N(D) = \{x\}$, blue if 1 < |N(D)| < r and red if $|N(D)| \ge r$.
- Note that if y ∈ B \ {x}, then any d-set D ⊂ N(x) ∩ N(y) is coloured blue or red.

- By the hypergraph removal lemma, it suffices to prove that in order to destroy all copies of K_r^(d) in H, one needs to remove Θ(|N(x)|^d) hyperedges from H.
- Colour a *d*-set $D \subset N(x)$ green if $N(D) = \{x\}$, blue if 1 < |N(D)| < r and red if $|N(D)| \ge r$.
- Note that if y ∈ B \ {x}, then any d-set D ⊂ N(x) ∩ N(y) is coloured blue or red.
- If there exists some R ⊂ N(x) of size r such that every D ⊂ R of size d is red, then condition 1) holds.

- By the hypergraph removal lemma, it suffices to prove that in order to destroy all copies of K_r^(d) in H, one needs to remove Θ(|N(x)|^d) hyperedges from H.
- Colour a *d*-set $D \subset N(x)$ green if $N(D) = \{x\}$, blue if 1 < |N(D)| < r and red if $|N(D)| \ge r$.
- Note that if y ∈ B \ {x}, then any d-set D ⊂ N(x) ∩ N(y) is coloured blue or red.
- If there exists some R ⊂ N(x) of size r such that every D ⊂ R of size d is red, then condition 1) holds.
- However, if ℓ is sufficiently large, by Ramsey's theorem we know that for every set $L \subset N(x) \cap N(y)$ of size ℓ , there exists a subset $R \subset L$ of size r such that all d-sets in R have the same colour.

向下 イヨト イヨト

- By the hypergraph removal lemma, it suffices to prove that in order to destroy all copies of K_r^(d) in H, one needs to remove Θ(|N(x)|^d) hyperedges from H.
- Colour a *d*-set $D \subset N(x)$ green if $N(D) = \{x\}$, blue if 1 < |N(D)| < r and red if $|N(D)| \ge r$.
- Note that if y ∈ B \ {x}, then any d-set D ⊂ N(x) ∩ N(y) is coloured blue or red.
- If there exists some R ⊂ N(x) of size r such that every D ⊂ R of size d is red, then condition 1) holds.
- However, if ℓ is sufficiently large, by Ramsey's theorem we know that for every set $L \subset N(x) \cap N(y)$ of size ℓ , there exists a subset $R \subset L$ of size r such that all d-sets in R have the same colour.
- So we can assume that they are all blue.

So we can assume that every ℓ-set in every N(x) ∩ N(y) contains a K_r^(d) in which all hyperedges are blue.

- So we can assume that every ℓ-set in every N(x) ∩ N(y) contains a K_r^(d) in which all hyperedges are blue.
- Hence, to destroy every $K_r^{(d)}$, we need to delete at least one blue edge from each ℓ -set in each $N(x) \cap N(y)$.

- So we can assume that every ℓ-set in every N(x) ∩ N(y) contains a K_r^(d) in which all hyperedges are blue.
- Hence, to destroy every $K_r^{(d)}$, we need to delete at least one blue edge from each ℓ -set in each $N(x) \cap N(y)$.
- So, we need to delete at least

$$\frac{1}{r}\sum_{y\in B\setminus\{x\}}\frac{1}{\binom{\ell}{d}}\binom{d(x,y)}{d}$$

hyperedges.

- So we can assume that every ℓ-set in every N(x) ∩ N(y) contains a K_r^(d) in which all hyperedges are blue.
- Hence, to destroy every $K_r^{(d)}$, we need to delete at least one blue edge from each ℓ -set in each $N(x) \cap N(y)$.
- So, we need to delete at least

$$\frac{1}{r}\sum_{y\in B\setminus\{x\}}\frac{1}{\binom{\ell}{d}}\binom{d(x,y)}{d}$$

hyperedges.

• Since the minimum degree of the graph is at least $cn^{1-1/d}$, it is easy to see that the sum is $\Omega(|N(x)|^d)$.
Open problem

Let $d \ge 3$ and t be fixed positive integers. Let G be a $K_{t,t}$ -free bipartite graph on n + n vertices with VC-dimension at most d. Must we have $e(G) = O(n^{2-1/d-\epsilon})$ for some $\epsilon > 0$?

• • = • • = •

Open problem

Let $d \ge 3$ and t be fixed positive integers. Let G be a $K_{t,t}$ -free bipartite graph on n + n vertices with VC-dimension at most d. Must we have $e(G) = O(n^{2-1/d-\epsilon})$ for some $\epsilon > 0$?

Open problem

Let $d \geq 3$. Is it true that $ex(n, F(d)) = O(n^{2-1/d-\epsilon})$ for some $\epsilon > 0$?

Open problem

Let $d \ge 3$ and t be fixed positive integers. Let G be a $K_{t,t}$ -free bipartite graph on n + n vertices with VC-dimension at most d. Must we have $e(G) = O(n^{2-1/d-\epsilon})$ for some $\epsilon > 0$?

Open problem

Let $d \geq 3$. Is it true that $ex(n, F(d)) = O(n^{2-1/d-\epsilon})$ for some $\epsilon > 0$?

Open problem

The result of Fox, Pach, Sheffer, Suk and Zahl had many geometric applications. Does our VC-dimension version have geometric applications?

Thank you for your attention!

Oliver Janzer (ETH Zurich) The Zarankiewicz problem for bounded VC-dimension