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The Zarankiewicz problem

De�nition

The Zarankiewicz problem asks for the maximum possible number

of edges in a Kt,t-free bipartite graph with n vertices on each side.

Here t is a �xed positive integer.

We write ex(n,Kt,t) for this number.

Theorem (K®vári�Sós�Turán '54)

For every t ≥ 2,

ex(n,Kt,t) ≤ ctn
2−1/t

for some constant ct depending only on t.

This bound is known to be tight for t = 2 and t = 3.

However, for t = 4, the best known lower bound is

ex(n,K4,4) ≥ ex(n,K3,3) = Ω(n5/3).
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The Zarankiewicz problem

Theorem (Ball�Pepe '12)

ex(n,K5,5) = Ω(n7/4).

This gives the best known bound also for ex(n,K6,6).

Theorem (Bohman�Keevash '10)

ex(n,Kt,t) = Ω(n2−
2

t+1 (log n)1/(t
2−1)).

Theorem (Alon�Kollár�Rónyai�Szabó '99)

For s ≥ (t − 1)! + 1,

ex(n,Kt,s) = Θ(n2−1/t).
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VC-dimension

De�nition (VC-dimension of a set system)

Let F be a set system on ground set V .

We say that a subset S ⊂ V is shattered by F if for every T ⊂ S
there exist some A ∈ F with T = A ∩ S .
The VC-dimension of F is the size of the largest set that is

shattered by F .

We can also de�ne the VC-dimension of a graph.

De�nition (VC-dimension of a bipartite graph)

If G is a bipartite graph with parts A and B , then note that the set

of neighbourhoods {N(b) : b ∈ B} forms a set system on ground

set A.
De�ne the VC-dimension of G to be the VC-dimension of this set

system.

Oliver Janzer (ETH Zurich) The Zarankiewicz problem for bounded VC-dimension



VC-dimension

De�nition (VC-dimension of a set system)

Let F be a set system on ground set V .

We say that a subset S ⊂ V is shattered by F if for every T ⊂ S
there exist some A ∈ F with T = A ∩ S .

The VC-dimension of F is the size of the largest set that is

shattered by F .

We can also de�ne the VC-dimension of a graph.

De�nition (VC-dimension of a bipartite graph)

If G is a bipartite graph with parts A and B , then note that the set

of neighbourhoods {N(b) : b ∈ B} forms a set system on ground

set A.
De�ne the VC-dimension of G to be the VC-dimension of this set

system.

Oliver Janzer (ETH Zurich) The Zarankiewicz problem for bounded VC-dimension



VC-dimension

De�nition (VC-dimension of a set system)

Let F be a set system on ground set V .

We say that a subset S ⊂ V is shattered by F if for every T ⊂ S
there exist some A ∈ F with T = A ∩ S .
The VC-dimension of F is the size of the largest set that is

shattered by F .

We can also de�ne the VC-dimension of a graph.

De�nition (VC-dimension of a bipartite graph)

If G is a bipartite graph with parts A and B , then note that the set

of neighbourhoods {N(b) : b ∈ B} forms a set system on ground

set A.
De�ne the VC-dimension of G to be the VC-dimension of this set

system.

Oliver Janzer (ETH Zurich) The Zarankiewicz problem for bounded VC-dimension



VC-dimension

De�nition (VC-dimension of a set system)

Let F be a set system on ground set V .

We say that a subset S ⊂ V is shattered by F if for every T ⊂ S
there exist some A ∈ F with T = A ∩ S .
The VC-dimension of F is the size of the largest set that is

shattered by F .

We can also de�ne the VC-dimension of a graph.

De�nition (VC-dimension of a bipartite graph)

If G is a bipartite graph with parts A and B , then note that the set

of neighbourhoods {N(b) : b ∈ B} forms a set system on ground

set A.
De�ne the VC-dimension of G to be the VC-dimension of this set

system.

Oliver Janzer (ETH Zurich) The Zarankiewicz problem for bounded VC-dimension



VC-dimension

De�nition (VC-dimension of a set system)

Let F be a set system on ground set V .

We say that a subset S ⊂ V is shattered by F if for every T ⊂ S
there exist some A ∈ F with T = A ∩ S .
The VC-dimension of F is the size of the largest set that is

shattered by F .

We can also de�ne the VC-dimension of a graph.

De�nition (VC-dimension of a bipartite graph)

If G is a bipartite graph with parts A and B , then note that the set

of neighbourhoods {N(b) : b ∈ B} forms a set system on ground

set A.

De�ne the VC-dimension of G to be the VC-dimension of this set

system.

Oliver Janzer (ETH Zurich) The Zarankiewicz problem for bounded VC-dimension



VC-dimension

De�nition (VC-dimension of a set system)

Let F be a set system on ground set V .

We say that a subset S ⊂ V is shattered by F if for every T ⊂ S
there exist some A ∈ F with T = A ∩ S .
The VC-dimension of F is the size of the largest set that is

shattered by F .

We can also de�ne the VC-dimension of a graph.

De�nition (VC-dimension of a bipartite graph)

If G is a bipartite graph with parts A and B , then note that the set

of neighbourhoods {N(b) : b ∈ B} forms a set system on ground

set A.
De�ne the VC-dimension of G to be the VC-dimension of this set

system.

Oliver Janzer (ETH Zurich) The Zarankiewicz problem for bounded VC-dimension



Shatter function

De�nition (Shatter function)

For a set system F on ground set V , the shatter function is de�ned

as

πF (z) = max
S⊂V :|S|=z

|{A ∩ S : A ∈ F}|.

Theorem (Sauer�Shelah)

Let F be a set system with VC-dimension d . Then

πF (z) ≤
d∑

i=0

(
z

i

)
.

That is, πF (z) ≤ czd for some c = c(d).
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The result of Fox, Pach, She�er, Suk and Zahl

Theorem (Fox�Pach�She�er�Suk�Zahl '17)

Let G be a bipartite graph with parts A and B such that |A| = m
and |B| = n such that the set system F = {N(b) : b ∈ B} has

πF (z) ≤ czd . If G is Kt,t-free, then

e(G ) ≤ c1(mn1−1/d + n),

where c1 = c1(c , d , t).

Corollary

Let G be a Kt,t-free bipartite graph on n + n vertices which has

VC-dimension at most d . Then

e(G ) ≤ cn2−1/d ,

where c = c(d , t).

Oliver Janzer (ETH Zurich) The Zarankiewicz problem for bounded VC-dimension



The result of Fox, Pach, She�er, Suk and Zahl

Theorem (Fox�Pach�She�er�Suk�Zahl '17)

Let G be a bipartite graph with parts A and B such that |A| = m
and |B| = n such that the set system F = {N(b) : b ∈ B} has

πF (z) ≤ czd . If G is Kt,t-free, then

e(G ) ≤ c1(mn1−1/d + n),

where c1 = c1(c , d , t).

Corollary

Let G be a Kt,t-free bipartite graph on n + n vertices which has

VC-dimension at most d . Then

e(G ) ≤ cn2−1/d ,

where c = c(d , t).

Oliver Janzer (ETH Zurich) The Zarankiewicz problem for bounded VC-dimension



The sharpness of their theorem

The shatter function version of the result of Fox et al. is tight

for m = n.

Indeed, as stated earlier, there exists a Kd ,d!-free bipartite

graph with n + n vertices and Θ(n2−1/d) edges.

It is not hard to verify that for any such graph

F = {N(b) : b ∈ B} has shatter function πF (z) ≤ czd .

Indeed, for any S ⊂ A of size z , the number of vertices b ∈ B
with |N(b) ∩ S | ≥ d is less than

(z
d

)
· d!.

(It is because for any T ⊂ S of size d there are less than d!
common neighbours of T .)

Hence,

πF (z) ≤ d! ·
(
z

d

)
+

d−1∑
i=0

(
z

i

)
.
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Our result

How about the VC-dimension version of their result? Is it also

tight?

It is tight for d = 2 since a K2,2-free bipartite graph has

VC-dimension at most 2 and there exist K2,2-free bipartite graphs

with Θ(n3/2) edges.

However, we can improve the upper bound for all d ≥ 3.

Theorem (J.�Pohoata '20+)

Let d ≥ 3 and t be �xed positive integers. Let G be a Kt,t-free

bipartite graph on n + n vertices which has VC-dimension at most

d . Then

e(G ) = o(n2−1/d).
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A related problem

Saying that G has VC-dimension at most d means that no set

of size d + 1 is shattered.

That's equivalent to saying that G does not contain F (d) as

an induced subgraph, where F (d) is de�ned as follows.

F (d) has parts X and Y where |X | = d + 1 and |Y | = 2d+1

and for every Z ⊂ X there is a vertex yZ ∈ Y such that the

neighbourhood of yZ in F (d) is precisely Z .

X

Y

Figure: The graph F (2)
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A related problem

So it's natural to ask what we can say about ex(n,F (d)).

Observe that all but one of the vertices in Y have degree at most d .

Theorem (Füredi '91, Alon�Krivelevich�Sudakov '03)

If H is a bipartite graph such that in one of the parts all but at

most d vertices have degree at most d , then

ex(n,H) = O(n2−1/d).

Theorem (Sudakov�Tomon '20)

If H is a Kd ,d -free bipartite graph such that in one of the parts

every vertex has degree at most d , then

ex(n,H) = o(n2−1/d).

Our proof is inspired by the proof of this result.
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A key lemma

We want to show that if G has at least cn2−1/d edges, then either

A has a subset of size d + 1 which is shattered, or G has Kt,t as a

subgraph.

Lemma

Let G be a bipartite graph with parts A and B and with minimum

degree satisfying δ(G ) ≥ cn1−1/d for some constant c > 0, and

where |A|, |B| ≤ n. Let r be a constant positive integer and let

x ∈ B . Then one of the following two statements must be true:

1 there exists a set R ⊂ N(x) of size r such that for every

D ⊂ R of size d , we have |N(D)| ≥ r or

2 there exist Θ(|N(x)|r ) sets R ⊂ N(x) of size r such that for

every D ⊂ R of size d , we have N(D) \ {x} 6= ∅.

On the next slide we prove that if 1) holds, then a randomly chosen

subset of R of size d + 1 is shattered with positive probability,

unless G contains Kt,t .
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If we have a �rich� set R

Assume that case 1) holds from the previous slide, i.e. that for

some large (compared to d and t) constant r there exist

x ∈ B and R ⊂ N(x) of size r such that for every D ⊂ R of

size d we have N(D) ≥ r .

Fix some D ⊂ R of size at most d . How many vertices z ∈ R
are there such that |N(z) ∩ N(D)| ≥ 1

d+1
|N(D)|?

N(D) is a large set, so if we have many such vertices, then we

can �nd a Kt,t in G . (That's because ex(m,Kt,t) = o(m2).)

Hence, if we choose S ⊂ R of size d + 1 randomly, then with

positive probability we will have that

|N(z) ∩ N(D)| < 1

d+1
|N(D)| holds for every D ⊂ S of size at

most d and every z ∈ S \ D.

So, for each D ⊂ S of size at most d , we may choose some

bD ∈ B such that N(bD) ∩ S = D.

Using S ⊂ N(x), this shows that S is shattered.
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If we have many �decent� candidates

Assume now that case 2) holds, i.e. for some large r there

exist Θ(|N(x)|r ) sets R ⊂ N(x) of size r such that for every

D ⊂ R of size d , we have N(D) \ {x} 6= ∅.

Roughly speaking, two possible problems can occur:

either some subset of R of size at most d − 1 has small

common neighbourhood, or

the neighbourhoods of the d-subsets of R are not su�ciently

disjoint that we can assign a di�erent neighbour for each

d-subset.

In either scenario, we can argue that the number of such bad

sets R is small.

For example, assume that N(D) = N(D ′) = {x , y} for some

distinct subsets D and D ′ of R of size d .

Then the number of ways to choose D ∪ D ′ is o(|N(x)||D∪D′|)
since once we have chosen D, the vertex y is determined, and

every member of D ′ \ D must be a neighbour of y .
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The proof of the lemma

Lemma

Let G be a bipartite graph with parts A and B and with minimum

degree satisfying δ(G ) ≥ cn1−1/d for some constant c > 0, and

where |A|, |B| ≤ n. Let r be a constant positive integer and let

x ∈ B . Then one of the following two statements must be true:

1 there exists a set R ⊂ N(x) of size r such that for every

D ⊂ R of size d , we have |N(D)| ≥ r or

2 there exist Θ(|N(x)|r ) sets R ⊂ N(x) of size r such that for

every D ⊂ R of size d , we have N(D) \ {x} 6= ∅.

De�ne a d-uniform hypergraph H on vertex set N(x) such that a

set D ⊂ N(x) of size d is a hyperedge of H if and only if

N(D) \ {x} 6= ∅.
Now condition 2) is saying that H contains Θ(|N(x)|r ) copies of

K
(d)
r .
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The proof of the lemma

By the hypergraph removal lemma, it su�ces to prove that in

order to destroy all copies of K
(d)
r in H, one needs to remove

Θ(|N(x)|d) hyperedges from H.

Colour a d-set D ⊂ N(x) green if N(D) = {x}, blue if
1 < |N(D)| < r and red if |N(D)| ≥ r .

Note that if y ∈ B \ {x}, then any d-set D ⊂ N(x) ∩ N(y) is

coloured blue or red.

If there exists some R ⊂ N(x) of size r such that every D ⊂ R
of size d is red, then condition 1) holds.

However, if ` is su�ciently large, by Ramsey's theorem we

know that for every set L ⊂ N(x) ∩N(y) of size `, there exists
a subset R ⊂ L of size r such that all d-sets in R have the

same colour.

So we can assume that they are all blue.
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The proof of the lemma

By the hypergraph removal lemma, it su�ces to prove that in

order to destroy all copies of K
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The proof of the lemma

So we can assume that every `-set in every N(x) ∩ N(y)

contains a K
(d)
r in which all hyperedges are blue.

Hence, to destroy every K
(d)
r , we need to delete at least one

blue edge from each `-set in each N(x) ∩ N(y).

So, we need to delete at least

1

r

∑
y∈B\{x}

1(
`
d

)(d(x , y)

d

)

hyperedges.

Since the minimum degree of the graph is at least cn1−1/d , it
is easy to see that the sum is Ω(|N(x)|d).
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Open problems

Open problem

Let d ≥ 3 and t be �xed positive integers. Let G be a Kt,t-free

bipartite graph on n + n vertices with VC-dimension at most d .
Must we have e(G ) = O(n2−1/d−ε) for some ε > 0?

Open problem

Let d ≥ 3. Is it true that ex(n,F (d)) = O(n2−1/d−ε) for some

ε > 0?

Open problem

The result of Fox, Pach, She�er, Suk and Zahl had many geometric

applications. Does our VC-dimension version have geometric

applications?
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Thank you for your attention!
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