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What does floating in equilibrium in direction u mean?
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If uis an equilibrium direction for K with relative density p, then
—u is an equilibrium direction for K with density 1 — p

— It is enough to consider p < 5

I. SOME BACKGROUND and one RESULT

1. There are non-symmetric counterexamples in dimension 2 to

Ulam's conjecture by Auerbach for relative density p = %
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2. There are counterexamples in dimension 2 with density p # %
by Wegner. These are not symmetric.

There are counterexamples in higher dimensions by Wegner. Those
are not convex - holes are allowed.

Ulam’s problem remains mostly open



Theorem 1 (Florentin-Schiitt-Werner-Zhang)

Let K C R"” be a symmetric convex body of volume 1 and density
1. If K is an Ulam floating body, then K is a ball.

Remark

In dimension 3 this was proved by Falconer and by Schneider.
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introduced independently by Barany+Larman and by
Schiitt+Werner.

Let 9 > 0 be given.
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e Ky is convex



e Ky is convex

Schiitt-Werner
There is dg such such that Ks, reduces to a point

e If K is symmetric, then §g = %

e If K is not symmetric, then dg < % can happen



2. The Dupin floating body Kis

Kis] is this set contained in K whose boundary is given by the
centroids g = g(K N H) where the hyperplane H cuts off a set of
volume J|K| from K

H
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Kis) need not be convex

Kls) is convex = K51 = Ks

Meyer-Reisner
K symmetric = K5 = K;



3. Relation between density p and the cut off volume §|K]|
WLOG: density of liquid pp =1, |K|=1

Archimedes law
weight(K) = weight of displaced water

—

p|K|=p = pr-(volume of displaced water) = 1-(1-9)
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WLOG: density of liquid pp =1, |K|=1

Archimedes law
weight(K) = weight of displaced water

—

p|K|=p = pr-(volume of displaced water) = 1-(1-9)

p=1-—9



4. The Metronoid M;(K)
introduced by H. Huang and B. Slomka

Ms(K) is the body whose boundary consists of the centroids
xks(u) = g(K N Hy ) of the floating parts of K




4. The Metronoid M;(K)
introduced by H. Huang and B. Slomka

Ms(K) is the body whose boundary consists of the centroids
xks(u) = g(K N Hy ) of the floating parts of K

Huang-Slomka
e Ms(K) is strictly convex
° KE;16CM5(K)CK§
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5. Relation between Ms(K) and Ulam floating body

Observation (Huang-Slomka-Werner)

K is an Ulam floating body iff Ms(K) is a ball
Proposition (Huang-Slomka-Werner)
K C R" such that |K| =1 and g(K) =0. Then

Ml—J(K) = _1_5

Ms(K)

° J=4 M%(K) = —M%(K), ie. M%(K) is symmetric
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Let 6 € (0, 3] and let K C R" be a convex body such that Kj is
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that forall u € S"tand v e S" 1 nut,
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KNHs
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Theorem 2 (Florentin-Schiitt-Werner-Zhang)

Let 6 € (0, 3] and let K C R" be a convex body such that Kj is
Clor Ks= K(s) reduces to a point.

K is an Ulam floating body if and only if there exists R > 0 such
that forall u € S"tand v e S" 1 nut,

/ (x,v)? — (g(K N Hs ), v)? dx = §|K| R.
KNHs

In that case, Ms(K) is a ball of radius R.

Remark 1
If Ks reduces to a point, which wlog we can assume to be 0, then
the condition reduces to

/ (x,v)?dx = 5|K| R.
KﬂH(;’u
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I1l. PROOF OF THEOREM 1
Theorem 1 (Florentin-Schiitt-Werner-Zhang)

Let K C R" be a 0-symmetric convex body of volume 1 and
density % If K is an Ulam floating body, then K is a ball.

Proof
|K|=1, p=1% and relation p=1-§ = §=1

K symmetric — K[%] = K% = {0}

Theorem 2 —

K is an Ulam floating body <—

Yue S vy e S"inut: fKnH(;,u(X? v)2dx = C
For £ € ™71, let

rk(§) = max{\ >0: X\ € K}

be the radial function of K
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Spherical Radon transform R

rK(§)"+1 — 1] do(§) = R(c,,r[}+1 —1)(uv)

For a Borel function f on S"1

REW) = [ Q) do(o)
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Spherical Radon transform R

For a Borel function f on S"1

REW) = [ Q) do(o)

Theorem If f is a bounded even Borel function on S"~! such that
forall ue S™1, [o, 1,0 F(€)da(§) =0, then f =00 ae.
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Spherical Radon transform R

(€)™ — 1] do(€) = R(carg™ —1)(u)

For a Borel function f on S"1
Ri@ = [ f€)da)
Snflmuj_
Theorem If f is a bounded even Borel function on S"~! such that

forall ue S™1, [o, 1,0 F(€)da(§) =0, then f =00 ae.

rk is even, Theorem — rx = constant for o-almost all u

rk is continuous = rx = constant for all t = K is a ball



