Convex Floating Bodies of Equilibrium

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

based on joint work with Han Huang and Boaz Slomka Dan Florentin, Carsten Schütt and Ning Zhang

Ulam's Problem

Is the Euclidean ball the unique body of uniform density ρ which floats in a liquid in equilibrium in any direction ?

We call such a body Ulam floating body

We will always assume that the density of the liquid is equal to 1

Ulam's Problem

Is the Euclidean ball the unique body of uniform density ρ which floats in a liquid in equilibrium in any direction ?

We call such a body Ulam floating body

We will always assume that the density of the liquid is equal to 1

What does *floating in equilibrium in direction u* mean?

u is an equilibrium direction for $K \iff g - b_{-}$ is parallel to *u*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

u is an equilibrium direction for $K \iff g - b_-$ is parallel to $u \iff g - b_+$ is parallel to u

 $\iff b_+ - b_-$ is parallel to u

u is an equilibrium direction for $K \iff g - b_-$ is parallel to $u \iff g - b_+$ is parallel to $u \iff b_+ - b_-$ is parallel to u

If *u* is an equilibrium direction for *K* with relative density ρ , then -u is an equilibrium direction for *K* with density $1 - \rho$

(日) (日) (日) (日) (日) (日) (日) (日)

 \implies It is enough to consider $\rho \leq \frac{1}{2}$

u is an equilibrium direction for $K \iff g - b_-$ is parallel to $u \iff g - b_+$ is parallel to $u \iff b_+ - b_-$ is parallel to u

If *u* is an equilibrium direction for *K* with relative density ρ , then -u is an equilibrium direction for *K* with density $1 - \rho$

 \implies It is enough to consider $\rho \leq \frac{1}{2}$

I. SOME BACKGROUND and one RESULT

1. There are **non-symmetric** counterexamples in dimension 2 to Ulam's conjecture by Auerbach for relative density $\rho = \frac{1}{2}$

- $0 \le \theta \le 2\pi$, $k \ge 0$, $f(\theta) = -k \cos(3\theta)$
- parametric equation for the boundary of the Auerbach figure A_k

- $0 \le \theta \le 2\pi$, $k \ge 0$, $f(\theta) = -k \cos(3\theta)$
- parametric equation for the boundary of the Auerbach figure A_k

$$egin{aligned} & x_{\mathcal{A}_k}(heta) = -\sin(heta)\,f(heta) + (f'(heta)-1)\,\cos(heta) \ & y_{\mathcal{A}_k}(heta) = \cos(heta)\,f(heta) + (f'(heta)-1)\,\sin(heta) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• A_k is only a ball if k = 0

- $0 \le \theta \le 2\pi$, $k \ge 0$, $f(\theta) = -k \cos(3\theta)$
- parametric equation for the boundary of the Auerbach figure A_k

$$egin{aligned} & x_{\mathcal{A}_k}(heta) = -\sin(heta)\,f(heta) + (f'(heta)-1)\,\cos(heta) \ & y_{\mathcal{A}_k}(heta) = \cos(heta)\,f(heta) + (f'(heta)-1)\,\sin(heta) \end{aligned}$$

• A_k is only a ball if k = 0

2. There are counterexamples in dimension 2 with density $\rho \neq \frac{1}{2}$ by Wegner. These are **not** symmetric.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

2. There are counterexamples in dimension 2 with density $\rho \neq \frac{1}{2}$ by Wegner. These are **not** symmetric.

There are counterexamples in higher dimensions by Wegner. Those are **not** convex - holes are allowed.

2. There are counterexamples in dimension 2 with density $\rho \neq \frac{1}{2}$ by Wegner. These are **not** symmetric.

There are counterexamples in higher dimensions by Wegner. Those are **not** convex - holes are allowed.

Ulam's problem remains mostly open

Theorem 1 (Florentin-Schütt-Werner-Zhang)

Let $K \subset \mathbb{R}^n$ be a symmetric convex body of volume 1 and density $\frac{1}{2}$. If K is an Ulam floating body, then K is a ball.

Remark

In dimension 3 this was proved by Falconer and by Schneider.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

II. TOOLS

1. The (convex) floating body K_{δ}

introduced independently by Barany+Larman and by Schütt+Werner.

Let $\delta \geq 0$ be given.

$$K_{\delta} = \bigcap_{\left|K \cap H^+_{\delta,u}\right| = \delta|K|} H^-_{\delta,u}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

II. TOOLS

1. The (convex) floating body K_{δ}

introduced independently by Barany+Larman and by Schütt+Werner.

Let $\delta \geq 0$ be given.

$$\mathcal{K}_{\delta} = igcap_{ig|\mathcal{K}\cap \mathcal{H}^+_{\delta,u}ig| = \delta|\mathcal{K}|} \mathcal{H}^-_{\delta,u}$$

• K_{δ} is convex

• K_{δ} is convex

Schütt-Werner

There is δ_0 such such that K_{δ_0} reduces to a point

- If *K* is symmetric, then $\delta_0 = \frac{1}{2}$
- If K is not symmetric, then $\delta_0 < \frac{1}{2}$ can happen

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2. The Dupin floating body $K_{[\delta]}$

 $\overline{K_{[\delta]}}$ is this set contained in K whose boundary is given by the centroids $g = g(K \cap H)$ where the hyperplane H cuts off a set of volume $\delta|K|$ from K

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 $\mathcal{K}_{[\delta]}$ need not be convex

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

 $\mathcal{K}_{[\delta]}$ need not be convex

 $K_{[\delta]}$ need not be convex

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

 $\mathcal{K}_{[\delta]} ext{ is convex} \implies \mathcal{K}_{[\delta]} = \mathcal{K}_{\delta}$

Meyer-Reisner K symmetric $\implies K_{[\delta]} = K_{\delta}$

Archimedes law

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

3. Relation between density ρ and the cut off volume $\delta |K|$ WLOG: density of liquid $\rho_L = 1$, |K| = 1

Archimedes law

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\rho = 1 - \delta$

4. The Metronoid $M_{\delta}(K)$

introduced by H. Huang and B. Slomka

 $M_{\delta}(K)$ is the body whose boundary consists of the centroids $x_{K,\delta}(u) = g(K \cap H^+_{\delta,u})$ of the floating parts of K

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

4. The Metronoid $M_{\delta}(K)$

introduced by H. Huang and B. Slomka

 $M_{\delta}(K)$ is the body whose boundary consists of the centroids $x_{K,\delta}(u) = g(K \cap H^+_{\delta,u})$ of the floating parts of K

Huang-Slomka

- $M_{\delta}(K)$ is strictly convex
- $K_{\frac{e-1}{e}\delta} \subset M_{\delta}(K) \subset K_{\frac{\delta}{e}}$

5. Relation between $M_{\delta}(K)$ and Ulam floating body

Observation (Huang-Slomka-Werner)

K is an Ulam floating body iff $M_{\delta}(K)$ is a ball

5. Relation between $M_{\delta}(K)$ and Ulam floating body

Observation (Huang-Slomka-Werner)

K is an Ulam floating body iff $M_{\delta}(K)$ is a ball

Proposition (Huang-Slomka-Werner)

 $K \subset \mathbb{R}^n$ such that |K| = 1 and g(K) = 0. Then

$$M_{1-\delta}(K) = -rac{\delta}{1-\delta} M_{\delta}(K)$$

5. Relation between $M_{\delta}(K)$ and Ulam floating body

Observation (Huang-Slomka-Werner)

K is an Ulam floating body iff $M_{\delta}(K)$ is a ball

Proposition (Huang-Slomka-Werner)

 $K \subset \mathbb{R}^n$ such that |K| = 1 and g(K) = 0. Then

$$M_{1-\delta}(K) = -rac{\delta}{1-\delta}\,M_{\delta}(K)$$

•
$$\delta = \frac{1}{2}$$
: $M_{\frac{1}{2}}(K) = -M_{\frac{1}{2}}(K)$, i.e. $M_{\frac{1}{2}}(K)$ is symmetric

Theorem 2 (Florentin-Schütt-Werner-Zhang)

Let $\delta \in (0, \frac{1}{2}]$ and let $K \subset \mathbb{R}^n$ be a convex body such that K_{δ} is C^1 or $K_{\delta} = K_{[\delta]}$ reduces to a point. *K* is an *Ulam floating body* if and only if there exists R > 0 such that for all $u \in S^{n-1}$ and $v \in S^{n-1} \cap u^{\perp}$,

$$\int_{K\cap H_{\delta,u}} \langle x,v\rangle^2 - \langle g(K\cap H_{\delta,u}),v\rangle^2 \, dx = \delta |K| \, R$$

Theorem 2 (Florentin-Schütt-Werner-Zhang)

Let $\delta \in (0, \frac{1}{2}]$ and let $K \subset \mathbb{R}^n$ be a convex body such that K_{δ} is C^1 or $K_{\delta} = K_{[\delta]}$ reduces to a point. *K* is an *Ulam floating body* if and only if there exists R > 0 such that for all $u \in S^{n-1}$ and $v \in S^{n-1} \cap u^{\perp}$,

$$\int_{K\cap H_{\delta,u}} \langle x,v\rangle^2 - \langle g(K\cap H_{\delta,u}),v\rangle^2 \, dx = \delta |K| \, R$$

In that case, $M_{\delta}(K)$ is a ball of radius R.

Theorem 2 (Florentin-Schütt-Werner-Zhang)

Let $\delta \in (0, \frac{1}{2}]$ and let $K \subset \mathbb{R}^n$ be a convex body such that K_{δ} is C^1 or $K_{\delta} = K_{[\delta]}$ reduces to a point. K is an Ulam floating body if and only if there exists R > 0 such that for all $u \in S^{n-1}$ and $v \in S^{n-1} \cap u^{\perp}$,

$$\int_{K\cap H_{\delta,u}} \langle x,v\rangle^2 - \langle g(K\cap H_{\delta,u}),v\rangle^2 \, dx = \delta |K| \, R.$$

In that case, $M_{\delta}(K)$ is a ball of radius R.

Remark 1

If \mathcal{K}_{δ} reduces to a point, which wlog we can assume to be 0, then the condition reduces to

$$\int_{K\cap H_{\delta,u}} \langle x,v\rangle^2 \, dx = \delta |K| \, R.$$

Theorem 1 (Florentin-Schütt-Werner-Zhang)

Let $K \subset \mathbb{R}^n$ be a 0-symmetric convex body of volume 1 and density $\frac{1}{2}$. If K is an Ulam floating body, then K is a ball.

・ロト・日本・モート モー うへぐ

Theorem 1 (Florentin-Schütt-Werner-Zhang)

Let $K \subset \mathbb{R}^n$ be a 0-symmetric convex body of volume 1 and density $\frac{1}{2}$. If K is an Ulam floating body, then K is a ball.

Proof

 $|\mathcal{K}|=1,\ \rho=rac{1}{2}$ and relation $ho=1-\delta \implies \delta=rac{1}{2}$

Theorem 1 (Florentin-Schütt-Werner-Zhang)

Let $K \subset \mathbb{R}^n$ be a 0-symmetric convex body of volume 1 and density $\frac{1}{2}$. If K is an Ulam floating body, then K is a ball.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof

$$\begin{split} |\mathcal{K}| &= 1, \ \rho = \frac{1}{2} \ \text{and relation} \ \rho = 1 - \delta \implies \delta = \frac{1}{2} \\ \mathcal{K} \ \text{symmetric} \implies \mathcal{K}_{[\frac{1}{2}]} = \mathcal{K}_{\frac{1}{2}} = \{0\} \end{split}$$

Theorem 1 (Florentin-Schütt-Werner-Zhang)

Let $K \subset \mathbb{R}^n$ be a 0-symmetric convex body of volume 1 and density $\frac{1}{2}$. If K is an Ulam floating body, then K is a ball.

Proof

$$\begin{split} |\mathcal{K}| &= 1, \ \rho = \frac{1}{2} \text{ and relation } \rho = 1 - \delta \implies \delta = \frac{1}{2} \\ \mathcal{K} \text{ symmetric } \implies \mathcal{K}_{[\frac{1}{2}]} = \mathcal{K}_{\frac{1}{2}} = \{0\} \end{split}$$

Theorem 2 \implies

 ${\it K}$ is an Ulam floating body \iff

$$\forall u \in S^{n-1}, \, \forall v \in S^{n-1} \cap u^{\perp}: \quad \int_{K \cap H_{\delta,u}} \langle x, v \rangle^2 \, dx = C$$

III. PROOF OF THEOREM 1

Theorem 1 (Florentin-Schütt-Werner-Zhang)

Let $K \subset \mathbb{R}^n$ be a 0-symmetric convex body of volume 1 and density $\frac{1}{2}$. If K is an Ulam floating body, then K is a ball.

Proof $|\mathcal{K}| = 1, \ \rho = \frac{1}{2} \text{ and relation } \rho = 1 - \delta \implies \delta = \frac{1}{2}$ K symmetric $\implies K_{\left[\frac{1}{2}\right]} = K_{\frac{1}{2}} = \{0\}$ Theorem 2 \implies K is an Ulam floating body \iff $\forall u \in S^{n-1}, \, \forall v \in S^{n-1} \cap u^{\perp}$: $\int_{K \cap H_{\delta,u}} \langle x, v \rangle^2 \, dx = C$ For $\xi \in S^{n-1}$, let

$$r_{\mathcal{K}}(\xi) = \max\{\lambda \ge 0 : \lambda \xi \in \mathcal{K}\}$$

be the radial function of K

$$C = \int_{K \cap H_{\delta,u}} \langle x, v \rangle^2 \, dx$$

$$C = \int_{K \cap H_{\delta,u}} \langle x, v \rangle^2 \, dx = \int_{S^{n-1} \cap u^{\perp}} \int_{t=0}^{r_K(\xi)} t^n \, \langle \xi, v \rangle^2 dt \, d\sigma(\xi)$$

$$C = \int_{K \cap H_{\delta,u}} \langle x, v \rangle^2 \, dx = \int_{S^{n-1} \cap u^{\perp}} \int_{t=0}^{r_{\kappa}(\xi)} t^n \, \langle \xi, v \rangle^2 \, dt \, d\sigma(\xi)$$
$$= \frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} r_{\kappa}(\xi)^{n+1} \, \langle \xi, v \rangle^2 \, d\sigma(\xi)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$C = \int_{K \cap H_{\delta,u}} \langle x, v \rangle^2 \, dx = \int_{S^{n-1} \cap u^{\perp}} \int_{t=0}^{r_K(\xi)} t^n \, \langle \xi, v \rangle^2 \, dt \, d\sigma(\xi)$$
$$= \frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} r_K(\xi)^{n+1} \, \langle \xi, v \rangle^2 \, d\sigma(\xi)$$

Let μ be the normalized Haar measure on $S^{n-2} = S^{n-1} \cap u^{\perp}$. For all $x \neq 0$

$$\int_{S^{n-2}} \langle x, v \rangle^2 d\mu(v) = 2 \frac{|B_2^{n-2}|}{|S^{n-2}|} ||x||$$

$$C = \int_{K \cap H_{\delta,u}} \langle x, v \rangle^2 \, dx = \int_{S^{n-1} \cap u^{\perp}} \int_{t=0}^{r_K(\xi)} t^n \, \langle \xi, v \rangle^2 \, dt \, d\sigma(\xi)$$
$$= \frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} r_K(\xi)^{n+1} \, \langle \xi, v \rangle^2 \, d\sigma(\xi)$$

Let μ be the normalized Haar measure on $S^{n-2} = S^{n-1} \cap u^{\perp}$. For all $x \neq 0$

$$\int_{S^{n-2}} \langle x, v \rangle^2 d\mu(v) = 2 \frac{|B_2^{n-2}|}{|S^{n-2}|} ||x||$$

$$C \int_{S^{n-1} \cap u^{\perp}} d\mu(v) = \frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} \int_{S^{n-1} \cap u^{\perp}} r_{\mathcal{K}}(\xi)^{n+1} \langle \xi, v \rangle^{2} d\sigma(\xi) d\mu(v)$$

$$C \int_{S^{n-1} \cap u^{\perp}} d\mu(v)$$

= $\frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} \int_{S^{n-1} \cap u^{\perp}} r_{\kappa}(\xi)^{n+1} \langle \xi, v \rangle^2 d\sigma(\xi) d\mu(v)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

$$C \int_{S^{n-1} \cap u^{\perp}} d\mu(v)$$

= $\frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1} \langle \xi, v \rangle^{2} d\sigma(\xi) d\mu(v)$
= $\frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1} \left(\int_{S^{n-1} \cap u^{\perp}} \langle \xi, v \rangle^{2} d\mu(v) \right) d\sigma(\xi)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

$$C \int_{S^{n-1} \cap u^{\perp}} d\mu(v) = \frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} \int_{S^{n-1} \cap u^{\perp}} r_{\kappa}(\xi)^{n+1} \langle \xi, v \rangle^{2} d\sigma(\xi) d\mu(v) = \frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} r_{\kappa}(\xi)^{n+1} \left(\int_{S^{n-1} \cap u^{\perp}} \langle \xi, v \rangle^{2} d\mu(v) \right) d\sigma(\xi) = \frac{2|B_{2}^{n-2}|}{(n+1)|S^{n-2}|} \int_{S^{n-1} \cap u^{\perp}} r_{\kappa}(\xi)^{n+1} d\sigma(\xi)$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

$$C \int_{S^{n-1} \cap u^{\perp}} d\mu(v) \\ = \frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} \int_{S^{n-1} \cap u^{\perp}} r_{\kappa}(\xi)^{n+1} \langle \xi, v \rangle^{2} d\sigma(\xi) d\mu(v) \\ = \frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} r_{\kappa}(\xi)^{n+1} \left(\int_{S^{n-1} \cap u^{\perp}} \langle \xi, v \rangle^{2} d\mu(v) \right) d\sigma(\xi) \\ = \frac{2|B_{2}^{n-2}|}{(n+1)|S^{n-2}|} \int_{S^{n-1} \cap u^{\perp}} r_{\kappa}(\xi)^{n+1} d\sigma(\xi)$$

or

$$C \int_{S^{n-1} \cap u^{\perp}} d\mu(v) = \frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} \int_{S^{n-1} \cap u^{\perp}} r_{\kappa}(\xi)^{n+1} \langle \xi, v \rangle^{2} d\sigma(\xi) d\mu(v) = \frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} r_{\kappa}(\xi)^{n+1} \left(\int_{S^{n-1} \cap u^{\perp}} \langle \xi, v \rangle^{2} d\mu(v) \right) d\sigma(\xi) = \frac{2|B_{2}^{n-2}|}{(n+1)|S^{n-2}|} \int_{S^{n-1} \cap u^{\perp}} r_{\kappa}(\xi)^{n+1} d\sigma(\xi)$$

or

$$|S^{n-2}| = \sigma\left(S^{n-1} \cap u^{\perp}\right) = \int_{S^{n-1} \cap u^{\perp}} d\sigma(\xi)$$

$$C \int_{S^{n-1} \cap u^{\perp}} d\mu(v) = \frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} \int_{S^{n-1} \cap u^{\perp}} r_{\kappa}(\xi)^{n+1} \langle \xi, v \rangle^{2} d\sigma(\xi) d\mu(v) = \frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} r_{\kappa}(\xi)^{n+1} \left(\int_{S^{n-1} \cap u^{\perp}} \langle \xi, v \rangle^{2} d\mu(v) \right) d\sigma(\xi) = \frac{2|B_{2}^{n-2}|}{(n+1)|S^{n-2}|} \int_{S^{n-1} \cap u^{\perp}} r_{\kappa}(\xi)^{n+1} d\sigma(\xi)$$

or

$$\begin{aligned} |S^{n-2}| &= \sigma\left(S^{n-1} \cap u^{\perp}\right) = \int_{S^{n-1} \cap u^{\perp}} d\sigma(\xi) \\ &= \frac{2|B_2^{n-2}|}{C(n+1)} \int_{S^{n-1} \cap u^{\perp}} r_{\kappa}(\xi)^{n+1} d\sigma(\xi) \end{aligned}$$

$$C \int_{S^{n-1} \cap u^{\perp}} d\mu(v) = \frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} \int_{S^{n-1} \cap u^{\perp}} r_{\kappa}(\xi)^{n+1} \langle \xi, v \rangle^{2} d\sigma(\xi) d\mu(v) = \frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} r_{\kappa}(\xi)^{n+1} \left(\int_{S^{n-1} \cap u^{\perp}} \langle \xi, v \rangle^{2} d\mu(v) \right) d\sigma(\xi) = \frac{2|B_{2}^{n-2}|}{(n+1)|S^{n-2}|} \int_{S^{n-1} \cap u^{\perp}} r_{\kappa}(\xi)^{n+1} d\sigma(\xi)$$

or

$$|S^{n-2}| = \sigma\left(S^{n-1} \cap u^{\perp}\right) = \int_{S^{n-1} \cap u^{\perp}} d\sigma(\xi)$$
$$= \frac{2|B_2^{n-2}|}{C(n+1)} \int_{S^{n-1} \cap u^{\perp}} r_K(\xi)^{n+1} d\sigma(\xi)$$

or

$$0 = \int_{S^{n-1} \cap u^{\perp}} \left[\frac{2|B_2^{n-2}|}{C(n+1)} r_{\mathcal{K}}(\xi)^{n+1} - 1 \right] d\sigma(\xi)$$

$$0 = \int_{S^{n-1} \cap u^{\perp}} \left[rac{2|B_2^{n-2}|}{C(n+1)} \, r_K(\xi)^{n+1} - 1
ight] \, d\sigma(\xi) =$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$0 = \int_{S^{n-1} \cap u^{\perp}} \left[\frac{2|B_2^{n-2}|}{C(n+1)} r_K(\xi)^{n+1} - 1 \right] d\sigma(\xi) = \mathcal{R}(c_n r_K^{n+1} - 1)(u)$$

Spherical Radon transform ${\cal R}$

For a Borel function f on S^{n-1}

$$\mathcal{R}f(u) = \int_{S^{n-1}\cap u^{\perp}} f(\xi) \, d\sigma(\xi)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

$$0 = \int_{S^{n-1} \cap u^{\perp}} \left[\frac{2|B_2^{n-2}|}{C(n+1)} r_K(\xi)^{n+1} - 1 \right] d\sigma(\xi) = \mathcal{R}(c_n r_K^{n+1} - 1)(u)$$

Spherical Radon transform \mathcal{R}

For a Borel function f on S^{n-1}

$$\mathcal{R}f(u) = \int_{\mathcal{S}^{n-1}\cap u^{\perp}} f(\xi) \, d\sigma(\xi)$$

Theorem If f is a bounded even Borel function on S^{n-1} such that for all $u \in S^{n-1}$, $\int_{S^{n-1} \cap u^{\perp}} f(\xi) d\sigma(\xi) = 0$, then $f = 0 \sigma$ a.e.

$$0 = \int_{S^{n-1} \cap u^{\perp}} \left[\frac{2|B_2^{n-2}|}{C(n+1)} r_K(\xi)^{n+1} - 1 \right] d\sigma(\xi) = \mathcal{R}(c_n r_K^{n+1} - 1)(u)$$

Spherical Radon transform \mathcal{R}

For a Borel function f on S^{n-1}

$$\mathcal{R}f(u) = \int_{\mathcal{S}^{n-1}\cap u^{\perp}} f(\xi) \, d\sigma(\xi)$$

Theorem If f is a bounded even Borel function on S^{n-1} such that for all $u \in S^{n-1}$, $\int_{S^{n-1} \cap u^{\perp}} f(\xi) d\sigma(\xi) = 0$, then $f = 0 \sigma$ a.e.

 $r_{\mathcal{K}}$ is even, Theorem $\implies r_{\mathcal{K}} = \text{constant}$ for σ -almost all u

$$0 = \int_{S^{n-1} \cap u^{\perp}} \left[\frac{2|B_2^{n-2}|}{C(n+1)} r_K(\xi)^{n+1} - 1 \right] \, d\sigma(\xi) = \mathcal{R}(c_n r_K^{n+1} - 1)(u)$$

Spherical Radon transform \mathcal{R}

For a Borel function f on S^{n-1}

$$\mathcal{R}f(u) = \int_{\mathcal{S}^{n-1}\cap u^{\perp}} f(\xi) \, d\sigma(\xi)$$

Theorem If f is a bounded even Borel function on S^{n-1} such that for all $u \in S^{n-1}$, $\int_{S^{n-1} \cap u^{\perp}} f(\xi) d\sigma(\xi) = 0$, then $f = 0 \sigma$ a.e.

 r_K is even, Theorem $\implies r_K = \text{constant for } \sigma\text{-almost all } u$

 r_K is continuous $\implies r_K = \text{constant for all } u \implies K$ is a ball