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Ulam’s Problem

Is the Euclidean ball the unique body of uniform density ρ which
floats in a liquid in equilibrium in any direction ?

We call such a body Ulam floating body

We will always assume that the density of the liquid is equal to 1

What does floating in equilibrium in direction u mean?
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u is an equilibrium direction for K ⇐⇒ g − b− is parallel to u
⇐⇒ g − b+ is parallel to u
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If u is an equilibrium direction for K with relative density ρ, then
−u is an equilibrium direction for K with density 1− ρ

=⇒ It is enough to consider ρ ≤ 1
2

I. SOME BACKGROUND and one RESULT

1. There are non-symmetric counterexamples in dimension 2 to

Ulam’s conjecture by Auerbach for relative density ρ = 1
2
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• 0 ≤ θ ≤ 2π, k ≥ 0, f (θ) = −k cos(3θ)

• parametric equation for the boundary of the Auerbach figure Ak

xAk
(θ) = − sin(θ) f (θ) + (f ′(θ)− 1) cos(θ)

yAk
(θ) = cos(θ) f (θ) + (f ′(θ)− 1) sin(θ)

• Ak is only a ball if k = 0
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2. There are counterexamples in dimension 2 with density ρ 6= 1
2

by Wegner. These are not symmetric.

There are counterexamples in higher dimensions by Wegner. Those
are not convex - holes are allowed.

Ulam’s problem remains mostly open
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Theorem 1 (Florentin-Schütt-Werner-Zhang)

Let K ⊂ Rn be a symmetric convex body of volume 1 and density
1
2 . If K is an Ulam floating body, then K is a ball.

Remark

In dimension 3 this was proved by Falconer and by Schneider.



II. TOOLS

1. The (convex) floating body Kδ

introduced independently by Barany+Larman and by
Schütt+Werner.

Let δ ≥ 0 be given.

Kδ =
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δ,u|=δ|K |
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• Kδ is convex

Schütt-Werner

There is δ0 such such that Kδ0 reduces to a point

• If K is symmetric, then δ0 = 1
2

• If K is not symmetric, then δ0 <
1
2 can happen
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2. The Dupin floating body K[δ]

K[δ] is this set contained in K whose boundary is given by the
centroids g = g(K ∩ H) where the hyperplane H cuts off a set of
volume δ|K | from K

"



K[δ] need not be convex
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K[δ] is convex =⇒ K[δ] = Kδ

Meyer-Reisner
K symmetric =⇒ K[δ] = Kδ
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3. Relation between density ρ and the cut off volume δ|K |

WLOG: density of liquid ρL = 1, |K | = 1

Archimedes law

weight(K ) = weight of displaced water

⇐⇒

ρ|K | = ρ = ρL·(volume of displaced water) = 1·(1−δ)

ρ = 1− δ
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4. The Metronoid Mδ(K )

introduced by H. Huang and B. Slomka

Mδ(K ) is the body whose boundary consists of the centroids
xK ,δ(u) = g(K ∩ H+

δ,u) of the floating parts of K

u

xK,δ (u)
0

K

Hδ, u

yu

Huang-Slomka

• Mδ(K ) is strictly convex

• K e−1
e
δ ⊂ Mδ(K ) ⊂ K δ

e
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5. Relation between Mδ(K ) and Ulam floating body

Observation (Huang-Slomka-Werner)

K is an Ulam floating body iff Mδ(K ) is a ball

Proposition (Huang-Slomka-Werner)

K ⊂ Rn such that |K | = 1 and g(K ) = 0. Then

M1−δ(K ) = − δ

1− δ
Mδ(K )

• δ = 1
2 : M 1

2
(K ) = −M 1

2
(K ), i.e. M 1

2
(K ) is symmetric
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Theorem 2 (Florentin-Schütt-Werner-Zhang)

Let δ ∈
(
0, 12
]

and let K ⊂ Rn be a convex body such that Kδ is
C 1 or Kδ = K[δ] reduces to a point.
K is an Ulam floating body if and only if there exists R > 0 such
that for all u ∈ Sn−1 and v ∈ Sn−1 ∩ u⊥,∫

K∩Hδ,u
〈x , v〉2 − 〈g(K ∩ Hδ,u), v〉2 dx = δ|K |R.

In that case, Mδ(K ) is a ball of radius R.

Remark 1
If Kδ reduces to a point, which wlog we can assume to be 0, then
the condition reduces to∫

K∩Hδ,u
〈x , v〉2 dx = δ|K |R.
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Let δ ∈
(
0, 12
]

and let K ⊂ Rn be a convex body such that Kδ is
C 1 or Kδ = K[δ] reduces to a point.
K is an Ulam floating body if and only if there exists R > 0 such
that for all u ∈ Sn−1 and v ∈ Sn−1 ∩ u⊥,∫

K∩Hδ,u
〈x , v〉2 − 〈g(K ∩ Hδ,u), v〉2 dx = δ|K |R.

In that case, Mδ(K ) is a ball of radius R.

Remark 1
If Kδ reduces to a point, which wlog we can assume to be 0, then
the condition reduces to∫

K∩Hδ,u
〈x , v〉2 dx = δ|K |R.



Theorem 2 (Florentin-Schütt-Werner-Zhang)
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III. PROOF OF THEOREM 1

Theorem 1 (Florentin-Schütt-Werner-Zhang)

Let K ⊂ Rn be a 0-symmetric convex body of volume 1 and
density 1

2 . If K is an Ulam floating body, then K is a ball.

Proof
|K | = 1, ρ = 1

2 and relation ρ = 1− δ =⇒ δ = 1
2

K symmetric =⇒ K[ 1
2
] = K 1

2
= {0}

Theorem 2 =⇒

K is an Ulam floating body ⇐⇒

∀u ∈ Sn−1, ∀v ∈ Sn−1 ∩ u⊥:
∫
K∩Hδ,u〈x , v〉

2 dx = C

For ξ ∈ Sn−1, let

rK (ξ) = max{λ ≥ 0 : λξ ∈ K}

be the radial function of K
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Fix u ∈ Sn−1. For all v ∈ Sn−1 ∩ u⊥

C =

∫
K∩Hδ,u

〈x , v〉2 dx

=

∫
Sn−1∩u⊥

∫ rK (ξ)

t=0
tn 〈ξ, v〉2dt dσ(ξ)

=
1

n + 1

∫
Sn−1∩u⊥

rK (ξ)n+1 〈ξ, v〉2dσ(ξ)

Let µ be the normalized Haar measure on Sn−2 = Sn−1 ∩ u⊥.
For all x 6= 0 ∫

Sn−2

〈x , v〉2dµ(v) = 2
|Bn−2

2 |
|Sn−2|

‖x‖

C

∫
Sn−1∩u⊥

dµ(v) =

1

n + 1

∫
Sn−1∩u⊥

∫
Sn−1∩u⊥

rK (ξ)n+1 〈ξ, v〉2dσ(ξ)dµ(v)
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