Convex Floating Bodies of Equilibrium

based on joint work with
Han Huang and Boaz Slomka
Dan Florentin, Carsten Schütt and Ning Zhang

Ulam's Problem

Is the Euclidean ball the unique body of uniform density ρ which floats in a liquid in equilibrium in any direction ?

We call such a body Ulam floating body
We will always assume that the density of the liquid is equal to 1

Ulam's Problem

Is the Euclidean ball the unique body of uniform density ρ which floats in a liquid in equilibrium in any direction?

We call such a body Ulam floating body
We will always assume that the density of the liquid is equal to 1
What does floating in equilibrium in direction u mean?

$g=g(k)$ center of gravity of K

$$
b_{+}=g\left(K \cap H^{+}\right)
$$

$$
b_{-}=g\left(K \cap H^{-}\right)
$$

u is an equilibrium direction for $K \Longleftrightarrow g-b_{-}$is parallel to u
u is an equilibrium direction for $K \Longleftrightarrow g-b_{-}$is parallel to u $\Longleftrightarrow g-b_{+}$is parallel to u $\Longleftrightarrow b_{+}-b_{-}$is parallel to u
u is an equilibrium direction for $K \Longleftrightarrow g-b_{-}$is parallel to u $\Longleftrightarrow g-b_{+}$is parallel to u $\Longleftrightarrow b_{+}-b_{-}$is parallel to u

If u is an equilibrium direction for K with relative density ρ, then
$-u$ is an equilibrium direction for K with density $1-\rho$
\Longrightarrow It is enough to consider $\rho \leq \frac{1}{2}$
u is an equilibrium direction for $K \Longleftrightarrow g-b_{-}$is parallel to u $\Longleftrightarrow g-b_{+}$is parallel to u $\Longleftrightarrow b_{+}-b_{-}$is parallel to u

If u is an equilibrium direction for K with relative density ρ, then
$-u$ is an equilibrium direction for K with density $1-\rho$
\Longrightarrow It is enough to consider $\rho \leq \frac{1}{2}$

I. SOME BACKGROUND and one RESULT

1. There are non-symmetric counterexamples in dimension 2 to Ulam's conjecture by Auerbach for relative density $\rho=\frac{1}{2}$

- $0 \leq \theta \leq 2 \pi, k \geq 0, f(\theta)=-k \cos (3 \theta)$
- parametric equation for the boundary of the Auerbach figure A_{k}
- $\quad 0 \leq \theta \leq 2 \pi, k \geq 0, f(\theta)=-k \cos (3 \theta)$
- parametric equation for the boundary of the Auerbach figure A_{k}

$$
\begin{aligned}
& x_{A_{k}}(\theta)=-\sin (\theta) f(\theta)+\left(f^{\prime}(\theta)-1\right) \cos (\theta) \\
& y_{A_{k}}(\theta)=\cos (\theta) f(\theta)+\left(f^{\prime}(\theta)-1\right) \sin (\theta)
\end{aligned}
$$

- A_{k} is only a ball if $k=0$
- $0 \leq \theta \leq 2 \pi, k \geq 0, f(\theta)=-k \cos (3 \theta)$
- parametric equation for the boundary of the Auerbach figure A_{k}

$$
\begin{aligned}
& x_{A_{k}}(\theta)=-\sin (\theta) f(\theta)+\left(f^{\prime}(\theta)-1\right) \cos (\theta) \\
& y_{A_{k}}(\theta)=\cos (\theta) f(\theta)+\left(f^{\prime}(\theta)-1\right) \sin (\theta)
\end{aligned}
$$

- $\quad A_{k}$ is only a ball if $k=0$

2. There are counterexamples in dimension 2 with density $\rho \neq \frac{1}{2}$ by Wegner. These are not symmetric.
3. There are counterexamples in dimension 2 with density $\rho \neq \frac{1}{2}$ by Wegner. These are not symmetric.

There are counterexamples in higher dimensions by Wegner. Those are not convex - holes are allowed.
2. There are counterexamples in dimension 2 with density $\rho \neq \frac{1}{2}$ by Wegner. These are not symmetric.

There are counterexamples in higher dimensions by Wegner. Those are not convex - holes are allowed.

Ulam's problem remains mostly open

Theorem 1 (Florentin-Schütt-Werner-Zhang)
Let $K \subset \mathbb{R}^{n}$ be a symmetric convex body of volume 1 and density $\frac{1}{2}$. If K is an Ulam floating body, then K is a ball.

Remark

In dimension 3 this was proved by Falconer and by Schneider.

II. TOOLS

1. The (convex) floating body K_{δ}
introduced independently by Barany+Larman and by Schütt+Werner.

Let $\delta \geq 0$ be given.

$$
K_{\delta}=\bigcap_{\left|K \cap H_{\delta, u}^{+}\right|=\delta|K|} H_{\delta, u}^{-}
$$

II. TOOLS

1. The (convex) floating body K_{δ}
introduced independently by Barany+Larman and by Schütt+Werner.

Let $\delta \geq 0$ be given.

$$
K_{\delta}=\bigcap_{\left|K \cap H_{\delta, u}^{+}\right|=\delta|K|} H_{\delta, u}^{-}
$$

- K_{δ} is convex
- K_{δ} is convex

Schütt-Werner

There is δ_{0} such such that $K_{\delta_{0}}$ reduces to a point

- If K is symmetric, then $\delta_{0}=\frac{1}{2}$
- If K is not symmetric, then $\delta_{0}<\frac{1}{2}$ can happen

2. The Dupin floating body $K_{[\delta]}$
$K_{[\delta]}$ is this set contained in K whose boundary is given by the centroids $g=g(K \cap H)$ where the hyperplane H cuts off a set of volume $\delta|K|$ from K

$K_{[\delta]}$ need not be convex
$K_{[\delta]}$ need not be convex

$K_{[\delta]}$ need not be convex

$K_{[\delta]}$ is convex $\Longrightarrow K_{[\delta]}=K_{\delta}$
Meyer-Reisner
K symmetric $\Longrightarrow K_{[\delta]}=K_{\delta}$
3. Relation between density ρ and the cut off volume $\delta|K|$

WLOG: density of liquid $\rho_{L}=1, \quad|K|=1$

Archimedes law

$$
\text { weight }(K)=\text { weight of displaced water }
$$

$$
\begin{aligned}
& \Longleftrightarrow \\
\rho|K|=\rho & =\rho_{L} \cdot(\text { volume of displaced water })=1 \cdot(1-\delta)
\end{aligned}
$$

3. Relation between density ρ and the cut off volume $\delta|K|$

WLOG: density of liquid $\rho_{L}=1, \quad|K|=1$

Archimedes law

$$
\begin{aligned}
& \text { weight }(K)=\text { weight of displaced water } \\
& \Longleftrightarrow \\
& \begin{aligned}
\rho|K|=\rho= & \rho_{L} \cdot(\text { volume of displaced water })=1 \cdot(1-\delta) \\
& \rho=1-\delta
\end{aligned}
\end{aligned}
$$

4. The Metronoid $M_{\delta}(K)$
introduced by H . Huang and B . Slomka
$M_{\delta}(K)$ is the body whose boundary consists of the centroids $x_{K, \delta}(u)=g\left(K \cap H_{\delta, u}^{+}\right)$of the floating parts of K

5. The Metronoid $M_{\delta}(K)$
introduced by H . Huang and B. Slomka
$M_{\delta}(K)$ is the body whose boundary consists of the centroids $x_{K, \delta}(u)=g\left(K \cap H_{\delta, u}^{+}\right)$of the floating parts of K

Huang-Slomka

- $M_{\delta}(K)$ is strictly convex
- $K_{\frac{e-1}{e} \delta} \subset M_{\delta}(K) \subset K_{\frac{\delta}{e}}$

5. Relation between $M_{\delta}(K)$ and Ulam floating body

Observation (Huang-Slomka-Werner)
K is an Ulam floating body iff $M_{\delta}(K)$ is a ball
5. Relation between $M_{\delta}(K)$ and Ulam floating body

Observation (Huang-Slomka-Werner)
K is an Ulam floating body iff $M_{\delta}(K)$ is a ball
Proposition (Huang-Slomka-Werner)
$K \subset \mathbb{R}^{n}$ such that $|K|=1$ and $g(K)=0$. Then

$$
M_{1-\delta}(K)=-\frac{\delta}{1-\delta} M_{\delta}(K)
$$

5. Relation between $M_{\delta}(K)$ and Ulam floating body

Observation (Huang-Slomka-Werner)
K is an Ulam floating body iff $M_{\delta}(K)$ is a ball
Proposition (Huang-Slomka-Werner)
$K \subset \mathbb{R}^{n}$ such that $|K|=1$ and $g(K)=0$. Then

$$
M_{1-\delta}(K)=-\frac{\delta}{1-\delta} M_{\delta}(K)
$$

- $\delta=\frac{1}{2}: \quad M_{\frac{1}{2}}(K)=-M_{\frac{1}{2}}(K)$, i.e. $M_{\frac{1}{2}}(K)$ is symmetric

Theorem 2 (Florentin-Schütt-Werner-Zhang)
Let $\delta \in\left(0, \frac{1}{2}\right]$ and let $K \subset \mathbb{R}^{n}$ be a convex body such that K_{δ} is C^{1} or $K_{\delta}=K_{[\delta]}$ reduces to a point.
K is an Ulam floating body if and only if there exists $R>0$ such that for all $u \in S^{n-1}$ and $v \in S^{n-1} \cap u^{\perp}$,

$$
\int_{K \cap H_{\delta, u}}\langle x, v\rangle^{2}-\left\langle g\left(K \cap H_{\delta, u}\right), v\right\rangle^{2} d x=\delta|K| R .
$$

Theorem 2 (Florentin-Schütt-Werner-Zhang)
Let $\delta \in\left(0, \frac{1}{2}\right]$ and let $K \subset \mathbb{R}^{n}$ be a convex body such that K_{δ} is C^{1} or $K_{\delta}=K_{[\delta]}$ reduces to a point.
K is an Ulam floating body if and only if there exists $R>0$ such that for all $u \in S^{n-1}$ and $v \in S^{n-1} \cap u^{\perp}$,

$$
\int_{K \cap H_{\delta, u}}\langle x, v\rangle^{2}-\left\langle g\left(K \cap H_{\delta, u}\right), v\right\rangle^{2} d x=\delta|K| R .
$$

In that case, $M_{\delta}(K)$ is a ball of radius R.

Theorem 2 (Florentin-Schütt-Werner-Zhang)
Let $\delta \in\left(0, \frac{1}{2}\right]$ and let $K \subset \mathbb{R}^{n}$ be a convex body such that K_{δ} is C^{1} or $K_{\delta}=K_{[\delta]}$ reduces to a point.
K is an Ulam floating body if and only if there exists $R>0$ such that for all $u \in S^{n-1}$ and $v \in S^{n-1} \cap u^{\perp}$,

$$
\int_{K \cap H_{\delta, u}}\langle x, v\rangle^{2}-\left\langle g\left(K \cap H_{\delta, u}\right), v\right\rangle^{2} d x=\delta|K| R
$$

In that case, $M_{\delta}(K)$ is a ball of radius R.

Remark 1

If K_{δ} reduces to a point, which wlog we can assume to be 0 , then the condition reduces to

$$
\int_{K \cap H_{\delta, u}}\langle x, v\rangle^{2} d x=\delta|K| R
$$

III. PROOF OF THEOREM 1

Theorem 1 (Florentin-Schütt-Werner-Zhang)
Let $K \subset \mathbb{R}^{n}$ be a 0 -symmetric convex body of volume 1 and density $\frac{1}{2}$. If K is an Ulam floating body, then K is a ball.
III. PROOF OF THEOREM 1

Theorem 1 (Florentin-Schütt-Werner-Zhang)
Let $K \subset \mathbb{R}^{n}$ be a 0 -symmetric convex body of volume 1 and density $\frac{1}{2}$. If K is an Ulam floating body, then K is a ball.

Proof
$|K|=1, \rho=\frac{1}{2}$ and relation $\rho=1-\delta \Longrightarrow \delta=\frac{1}{2}$
III. PROOF OF THEOREM 1

Theorem 1 (Florentin-Schütt-Werner-Zhang)
Let $K \subset \mathbb{R}^{n}$ be a 0 -symmetric convex body of volume 1 and density $\frac{1}{2}$. If K is an Ulam floating body, then K is a ball.

Proof
$|K|=1, \rho=\frac{1}{2}$ and relation $\rho=1-\delta \Longrightarrow \delta=\frac{1}{2}$
K symmetric $\Longrightarrow K_{\left[\frac{1}{2}\right]}=K_{\frac{1}{2}}=\{0\}$

III. PROOF OF THEOREM 1

Theorem 1 (Florentin-Schütt-Werner-Zhang)
Let $K \subset \mathbb{R}^{n}$ be a 0 -symmetric convex body of volume 1 and density $\frac{1}{2}$. If K is an Ulam floating body, then K is a ball.

Proof
$|K|=1, \rho=\frac{1}{2}$ and relation $\rho=1-\delta \Longrightarrow \delta=\frac{1}{2}$
K symmetric $\Longrightarrow K_{\left[\frac{1}{2}\right]}=K_{\frac{1}{2}}=\{0\}$
Theorem 2

K is an Ulam floating body

$\forall u \in S^{n-1}, \forall v \in S^{n-1} \cap u^{\perp}: \quad \int_{K \cap H_{\delta, u}}\langle x, v\rangle^{2} d x=C$

III. PROOF OF THEOREM 1

Theorem 1 (Florentin-Schütt-Werner-Zhang)
Let $K \subset \mathbb{R}^{n}$ be a 0 -symmetric convex body of volume 1 and density $\frac{1}{2}$. If K is an Ulam floating body, then K is a ball.
Proof
$|K|=1, \rho=\frac{1}{2}$ and relation $\rho=1-\delta \Longrightarrow \delta=\frac{1}{2}$
K symmetric $\Longrightarrow K_{\left[\frac{1}{2}\right]}=K_{\frac{1}{2}}=\{0\}$
Theorem 2

K is an Ulam floating body

$\forall u \in S^{n-1}, \forall v \in S^{n-1} \cap u^{\perp}: \quad \int_{K \cap H_{\delta, u}}\langle x, v\rangle^{2} d x=C$
For $\xi \in S^{n-1}$, let

$$
r_{K}(\xi)=\max \{\lambda \geq 0: \lambda \xi \in K\}
$$

be the radial function of K

Fix $u \in S^{n-1}$. For all $v \in S^{n-1} \cap u^{\perp}$
$C=\int_{K \cap H_{\delta, u}}\langle x, v\rangle^{2} d x$

Fix $u \in S^{n-1}$. For all $v \in S^{n-1} \cap u^{\perp}$

$$
C=\int_{K \cap H_{\delta, u}}\langle x, v\rangle^{2} d x=\int_{S^{n-1} \cap u^{\perp}} \int_{t=0}^{r_{K}(\xi)} t^{n}\langle\xi, v\rangle^{2} d t d \sigma(\xi)
$$

Fix $u \in S^{n-1}$. For all $v \in S^{n-1} \cap u^{\perp}$

$$
\begin{aligned}
C & =\int_{K \cap H_{\delta, u}}\langle x, v\rangle^{2} d x=\int_{S^{n-1} \cap u^{\perp}} \int_{t=0}^{r_{K}(\xi)} t^{n}\langle\xi, v\rangle^{2} d t d \sigma(\xi) \\
& =\frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1}\langle\xi, v\rangle^{2} d \sigma(\xi)
\end{aligned}
$$

Fix $u \in S^{n-1}$. For all $v \in S^{n-1} \cap u^{\perp}$

$$
\begin{aligned}
C & =\int_{K \cap H_{\delta, u}}\langle x, v\rangle^{2} d x=\int_{S^{n-1} \cap u^{\perp}} \int_{t=0}^{r_{K}(\xi)} t^{n}\langle\xi, v\rangle^{2} d t d \sigma(\xi) \\
& =\frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1}\langle\xi, v\rangle^{2} d \sigma(\xi)
\end{aligned}
$$

Let μ be the normalized Haar measure on $S^{n-2}=S^{n-1} \cap u^{\perp}$. For all $x \neq 0$

$$
\int_{S^{n-2}}\langle x, v\rangle^{2} d \mu(v)=2 \frac{\left|B_{2}^{n-2}\right|}{\left|S^{n-2}\right|}\|x\|
$$

Fix $u \in S^{n-1}$. For all $v \in S^{n-1} \cap u^{\perp}$

$$
\begin{aligned}
C & =\int_{K \cap H_{\delta, u}}\langle x, v\rangle^{2} d x=\int_{S^{n-1} \cap u^{\perp}} \int_{t=0}^{r_{K}(\xi)} t^{n}\langle\xi, v\rangle^{2} d t d \sigma(\xi) \\
& =\frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1}\langle\xi, v\rangle^{2} d \sigma(\xi)
\end{aligned}
$$

Let μ be the normalized Haar measure on $S^{n-2}=S^{n-1} \cap u^{\perp}$.
For all $x \neq 0$

$$
\int_{S^{n-2}}\langle x, v\rangle^{2} d \mu(v)=2 \frac{\left|B_{2}^{n-2}\right|}{\left|S^{n-2}\right|}\|x\|
$$

$$
C \int_{S^{n-1} \cap u^{\perp}} d \mu(v)=
$$

$$
\frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1}\langle\xi, v\rangle^{2} d \sigma(\xi) d \mu(v)
$$

$C \int_{S^{n-1} \cap u^{\perp}} d \mu(v)$

$$
=\frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1}\langle\xi, v\rangle^{2} d \sigma(\xi) d \mu(v)
$$

$$
\begin{aligned}
C \int_{S^{n-1} \cap u^{\perp}} & d \mu(v) \\
& =\frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1}\langle\xi, v\rangle^{2} d \sigma(\xi) d \mu(v) \\
& =\frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1}\left(\int_{S^{n-1} \cap u^{\perp}}\langle\xi, v\rangle^{2} d \mu(v)\right) d \sigma(\xi)
\end{aligned}
$$

$$
\begin{aligned}
C \int_{S^{n-1} \cap u^{\perp}} & d \mu(v) \\
& =\frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1}\langle\xi, v\rangle^{2} d \sigma(\xi) d \mu(v) \\
& =\frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1}\left(\int_{S^{n-1} \cap u^{\perp}}\langle\xi, v\rangle^{2} d \mu(v)\right) d \sigma(\xi) \\
& =\frac{2\left|B_{2}^{n-2}\right|}{(n+1)\left|S^{n-2}\right|} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1} d \sigma(\xi)
\end{aligned}
$$

$$
\begin{aligned}
C \int_{S^{n-1} \cap u^{\perp}} & d \mu(v) \\
& =\frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1}\langle\xi, v\rangle^{2} d \sigma(\xi) d \mu(v) \\
& =\frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1}\left(\int_{S^{n-1} \cap u^{\perp}}\langle\xi, v\rangle^{2} d \mu(v)\right) d \sigma(\xi) \\
& =\frac{2\left|B_{2}^{n-2}\right|}{(n+1)\left|S^{n-2}\right|} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1} d \sigma(\xi)
\end{aligned}
$$

or

$$
\begin{aligned}
C \int_{S^{n-1} \cap u^{\perp}} & d \mu(v) \\
& =\frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1}\langle\xi, v\rangle^{2} d \sigma(\xi) d \mu(v) \\
& =\frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1}\left(\int_{S^{n-1} \cap u^{\perp}}\langle\xi, v\rangle^{2} d \mu(v)\right) d \sigma(\xi) \\
& =\frac{2\left|B_{2}^{n-2}\right|}{(n+1)\left|S^{n-2}\right|} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1} d \sigma(\xi)
\end{aligned}
$$

or

$$
\left|S^{n-2}\right|=\sigma\left(S^{n-1} \cap u^{\perp}\right)=\int_{S^{n-1} \cap u^{\perp}} d \sigma(\xi)
$$

$$
\begin{aligned}
C \int_{S^{n-1} \cap u^{\perp}} & d \mu(v) \\
& =\frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1}\langle\xi, v\rangle^{2} d \sigma(\xi) d \mu(v) \\
& =\frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1}\left(\int_{S^{n-1} \cap u \perp}\langle\xi, v\rangle^{2} d \mu(v)\right) d \sigma(\xi) \\
& =\frac{2\left|B_{2}^{n-2}\right|}{(n+1)\left|S^{n-2}\right|} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1} d \sigma(\xi)
\end{aligned}
$$

or

$$
\begin{aligned}
\left|S^{n-2}\right| & =\sigma\left(S^{n-1} \cap u^{\perp}\right)=\int_{S^{n-1} \cap u^{\perp}} d \sigma(\xi) \\
& =\frac{2\left|B_{2}^{n-2}\right|}{C(n+1)} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1} d \sigma(\xi)
\end{aligned}
$$

$C \int_{S^{n-1} \cap u^{\perp}} d \mu(v)$

$$
\begin{aligned}
& =\frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1}\langle\xi, v\rangle^{2} d \sigma(\xi) d \mu(v) \\
& =\frac{1}{n+1} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1}\left(\int_{S^{n-1} \cap u^{\perp}}\langle\xi, v\rangle^{2} d \mu(v)\right) d \sigma(\xi) \\
& =\frac{2\left|B_{2}^{n-2}\right|}{(n+1)\left|S^{n-2}\right|} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1} d \sigma(\xi)
\end{aligned}
$$

or

$$
\begin{aligned}
\left|S^{n-2}\right| & =\sigma\left(S^{n-1} \cap u^{\perp}\right)=\int_{S^{n-1} \cap u^{\perp}} d \sigma(\xi) \\
& =\frac{2\left|B_{2}^{n-2}\right|}{C(n+1)} \int_{S^{n-1} \cap u^{\perp}} r_{K}(\xi)^{n+1} d \sigma(\xi)
\end{aligned}
$$

or

$$
0=\int_{S^{n-1} \cap u^{\perp}}\left[\frac{2\left|B_{2}^{n-2}\right|}{C(n+1)} r_{K}(\xi)^{n+1}-1\right] d \sigma(\xi)
$$

$$
0=\int_{S^{n-1} \cap u^{\perp}}\left[\frac{2\left|B_{2}^{n-2}\right|}{C(n+1)} r_{K}(\xi)^{n+1}-1\right] d \sigma(\xi)=
$$

$$
0=\int_{S^{n-1} \cap u^{\perp}}\left[\frac{2\left|B_{2}^{n-2}\right|}{C(n+1)} r_{K}(\xi)^{n+1}-1\right] d \sigma(\xi)=\mathcal{R}\left(c_{n} r_{K}^{n+1}-1\right)(u)
$$

Spherical Radon transform \mathcal{R}
For a Borel function f on S^{n-1}

$$
\mathcal{R} f(u)=\int_{S^{n-1} \cap u^{\perp}} f(\xi) d \sigma(\xi)
$$

$$
0=\int_{S^{n-1} \cap u^{\perp}}\left[\frac{2\left|B_{2}^{n-2}\right|}{C(n+1)} r_{K}(\xi)^{n+1}-1\right] d \sigma(\xi)=\mathcal{R}\left(c_{n} r_{K}^{n+1}-1\right)(u)
$$

Spherical Radon transform \mathcal{R}
For a Borel function f on S^{n-1}

$$
\mathcal{R} f(u)=\int_{S^{n-1} \cap u^{\perp}} f(\xi) d \sigma(\xi)
$$

Theorem If f is a bounded even Borel function on S^{n-1} such that for all $u \in S^{n-1}, \int_{S^{n-1} \cap u^{\perp}} f(\xi) d \sigma(\xi)=0$, then $f=0 \sigma$ a.e.

$$
0=\int_{S^{n-1} \cap u^{\perp}}\left[\frac{2\left|B_{2}^{n-2}\right|}{C(n+1)} r_{K}(\xi)^{n+1}-1\right] d \sigma(\xi)=\mathcal{R}\left(c_{n} r_{K}^{n+1}-1\right)(u)
$$

Spherical Radon transform \mathcal{R}
For a Borel function f on S^{n-1}

$$
\mathcal{R} f(u)=\int_{S^{n-1} \cap u^{\perp}} f(\xi) d \sigma(\xi)
$$

Theorem If f is a bounded even Borel function on S^{n-1} such that for all $u \in S^{n-1}, \int_{S^{n-1} \cap u^{\perp}} f(\xi) d \sigma(\xi)=0$, then $f=0 \sigma$ a.e.
r_{K} is even, Theorem $\Longrightarrow r_{K}=$ constant for σ-almost all u

$$
0=\int_{S^{n-1} \cap u^{\perp}}\left[\frac{2\left|B_{2}^{n-2}\right|}{C(n+1)} r_{K}(\xi)^{n+1}-1\right] d \sigma(\xi)=\mathcal{R}\left(c_{n} r_{K}^{n+1}-1\right)(u)
$$

Spherical Radon transform \mathcal{R}
For a Borel function f on S^{n-1}

$$
\mathcal{R} f(u)=\int_{S^{n-1} \cap u^{\perp}} f(\xi) d \sigma(\xi)
$$

Theorem If f is a bounded even Borel function on S^{n-1} such that for all $u \in S^{n-1}, \int_{S^{n-1} \cap u^{\perp}} f(\xi) d \sigma(\xi)=0$, then $f=0 \sigma$ a.e.
r_{K} is even, Theorem $\Longrightarrow r_{K}=$ constant for σ-almost all u
r_{K} is continuous $\Longrightarrow r_{K}=$ constant for all $u \Longrightarrow K$ is a ball

