Quantitative Fractional Helly and (p,q)-Theorems

Attila Jung Loránd Eötvös University, Budapest

joint with

Márton Naszódi CoGe Research Group, Eötvös Univ., Budapest

Part I.
Context and results

Generalizations of Helly's Theorem

Helly's Theorem '23

Let \mathcal{C} be a finite family of convex sets in \mathbb{R}^d . If every d+1-tuple in \mathcal{C} have nonempty intersection, then $\cap \mathcal{C}$ is nonempty.

Generalizations of Helly's Theorem

Helly's Theorem '23

Let $\mathcal C$ be a finite family of convex sets in $\mathbb R^d$. If every d+1-tuple in $\mathcal C$ have nonempty intersection, then $\cap \mathcal C$ is nonempty.

Katchalski, Liu '79: Fractional Helly Theorem

For every $\alpha \in (0,1]$ there is a $\beta \in (0,1]$ s.t. If at least $\alpha \binom{n}{d+1}$ of the d+1-tuples from $\mathcal C$ have nonempty intersection, then $\exists \mathcal C' \subset \mathcal C$ with $|\mathcal C'| \geq \beta |\mathcal C|$ s.t. $\cap \mathcal C'$ is nonempty.

Generalizations of Helly's Theorem

Helly's Theorem '23

Let $\mathcal C$ be a finite family of convex sets in $\mathbb R^d$. If every d+1-tuple in $\mathcal C$ have nonempty intersection, then $\cap \mathcal C$ is nonempty.

Katchalski, Liu '79: Fractional Helly Theorem

For every $\alpha \in (0,1]$ there is a $\beta \in (0,1]$ s.t. If at least $\alpha \binom{n}{d+1}$ of the d+1-tuples from $\mathcal C$ have nonempty intersection, then $\exists \mathcal C' \subset \mathcal C$ with $|\mathcal C'| \geq \beta |\mathcal C|$ s.t. $\cap \mathcal C'$ is nonempty.

Alon, Kleitman '92: (p,q)-Theorem

For every $p \ge q \ge d+1$ there is a $H_d(p,q)$ s.t.

If among any p members of $\mathcal C$ there are q whose intersection is nonempty,

then there is a set of at most H points intersecting all the members of C.

Bárány, Katchalski and Pach '82: Quantitative Volume Theorem

Let \mathcal{C} be a finite family of convex bodies in \mathbb{R}^d such that any 2d of them have intersection of volume at least 1. Then $\cap \mathcal{C}$ is of volume at least d^{-cd^2} .

Bárány, Katchalski and Pach '82: Quantitative Volume Theorem

Let $\mathcal C$ be a finite family of convex bodies in $\mathbb R^d$ such that any 2d of them have intersection of volume at least 1. Then $\cap \mathcal C$ is of volume at least d^{-cd^2} .

▶ 2d cannot be improved

Bárány, Katchalski and Pach '82: Quantitative Volume Theorem

Let $\mathcal C$ be a finite family of convex bodies in $\mathbb R^d$ such that any 2d of them have intersection of volume at least 1. Then $\cap \mathcal C$ is of volume at least d^{-cd^2} .

- ▶ 2d cannot be improved
- ► Naszódi '16: Volume bound improved to d^{-cd}.

Bárány, Katchalski and Pach '82: Quantitative Volume Theorem

Let $\mathcal C$ be a finite family of convex bodies in $\mathbb R^d$ such that any 2d of them have intersection of volume at least 1. Then $\cap \mathcal C$ is of volume at least d^{-cd^2} .

- 2d cannot be improved
- Naszódi '16: Volume bound improved to d^{-cd} .

John's Theorem '48

If $K \subset \mathbb{R}^d$ is a convex body, then it contains a unique ellipsoid, John(K) of maximal volume. Moreover, $K \subset d \cdot John(K)$.

J., Naszódi: QFH with large intersections

For every $\alpha \in (0,1]$ there is a $\beta \in (0,1]$ s.t. If at least $\alpha(\frac{n}{2d(d+3)})$ of the $\frac{d(d+3)}{2}$ -tuples from $\mathcal C$ is such, that their intersection contains an ellipsoid of volume 1, then $\exists \mathcal C' \subset \mathcal C$ with $|\mathcal C'| \geq \beta |\mathcal C|$ s.t. $\cap \mathcal C'$ contains an ellipsoid of volume 1.

J., Naszódi: QFH with large intersections

For every $\alpha \in (0,1]$ there is a $\beta \in (0,1]$ s.t. If at least $\alpha(\frac{n}{\frac{d(d+3)}{2}})$ of the $\frac{d(d+3)}{2}$ -tuples from $\mathcal C$ is such, that their intersection contains an ellipsoid of volume 1, then $\exists \mathcal C' \subset \mathcal C$ with $|\mathcal C'| \geq \beta |\mathcal C|$ s.t. $\cap \mathcal C'$ contains an ellipsoid of volume 1.

J., Naszódi: QFH with small intersections

For every $\alpha \in (0,1]$ there is a $\beta \in (0,1]$ s.t.

If at least $\alpha\binom{n}{3d+1}$ of the 3d+1-tuples from $\mathcal C$ is such, that their intersection contains an ellipsoid of volume 1, then $\exists \mathcal C' \subset \mathcal C$ with $|\mathcal C'| \geq \beta |\mathcal C|$ s.t. $\cap \mathcal C'$ contains an ellipsoid of volume d^{-cd^2} .

J., Naszódi: QFH with large intersections

For every $\alpha \in (0,1]$ there is a $\beta \in (0,1]$ s.t. If at least $\alpha(\frac{n}{2(d+3)})$ of the $\frac{d(d+3)}{2}$ -tuples from $\mathcal C$ is such, that their intersection contains an ellipsoid of volume 1, then $\exists \mathcal C' \subset \mathcal C$ with $|\mathcal C'| \geq \beta |\mathcal C|$ s.t. $\cap \mathcal C'$ contains an ellipsoid of volume 1.

J., Naszódi: QFH with small intersections

For every $\alpha \in (0,1]$ there is a $\beta \in (0,1]$ s.t. If at least $\alpha \binom{n}{3d+1}$ of the 3d+1-tuples from $\mathcal C$ is such, that their intersection contains an ellipsoid of volume 1, then $\exists \mathcal C' \subset \mathcal C$ with $|\mathcal C'| \geq \beta |\mathcal C|$ s.t. $\cap \mathcal C'$ contains an ellipsoid of volume d^{-cd^2} .

▶ It would be nice to have 2d instead of 3d + 1.

J., Naszódi: QFH with large intersections

For every $\alpha \in (0,1]$ there is a $\beta \in (0,1]$ s.t. If at least $\alpha(\frac{n}{\frac{d(d+3)}{2}})$ of the $\frac{d(d+3)}{2}$ -tuples from $\mathcal C$ is such, that their intersection contains an ellipsoid of volume 1, then $\exists \mathcal C' \subset \mathcal C$ with $|\mathcal C'| \geq \beta |\mathcal C|$ s.t. $\cap \mathcal C'$ contains an ellipsoid of volume 1.

J., Naszódi: QFH with small intersections

For every $\alpha \in (0,1]$ there is a $\beta \in (0,1]$ s.t. If at least $\alpha \binom{n}{3d+1}$ of the 3d+1-tuples from $\mathcal C$ is such, that their intersection contains an ellipsoid of volume 1, then $\exists \mathcal C' \subset \mathcal C$ with $|\mathcal C'| \geq \beta |\mathcal C|$ s.t. $\cap \mathcal C'$ contains an ellipsoid of volume d^{-cd^2} .

- lt would be nice to have 2d instead of 3d + 1.
- $ightharpoonup d^{-cd}$ in place of d^{-cd^2} ?

Quantitative (p,q) Theorem

Quantitative transversal number

A set T of ellipsoids of volume v is a quantitative v-transversal of C, if every $C \in C$ contains at least one ellipsoid from T.

Quantitative (p,q) Theorem

Quantitative transversal number

A set T of ellipsoids of volume v is a **quantitative** v-transversal of C, if every $C \in C$ contains at least one ellipsoid from T.

J., Naszódi: Quantitative (p, q) Theorem

For every $p \geq q \geq 3d+1$, there is $H_d(p,q)$ s.t.: If $\mathcal C$ is a finite family of convex bodies in $\mathbb R^d$, every member of $\mathcal C$ contains an ellipsoid of volume 1, and among any p of them there are q whose intersection also contains an ellipsoid of volume 1.

Then, C has a quantitative d^{-cd^2} -transversal of cardinality at most H.

Part II.
Some word on proofs

▶ Alon, Kalai, Meshulam and Matousek '02: a Fractional Helly Theorem implies a (p, q)-Theorem for hypergraphs.

- Alon, Kalai, Meshulam and Matousek '02: a Fractional Helly Theorem implies a (p, q)-Theorem for hypergraphs.
- ▶ But we have two different hypergraphs in the assumption and the conclusion.

Alon, Kalai, Meshulam and Matousek '02: a Fractional Helly Theorem implies a (p, q)-Theorem for hypergraphs.

First step

QFH with FH number
$$\frac{d(d+3)}{2}$$
 Q Tverberg

[Sarkar, Xue and Soberón '19]

$$\begin{array}{ccc} \Longrightarrow & \mathsf{Q} \; \mathsf{Selection} & \Longrightarrow & \exists \; \mathsf{of} \; \mathsf{Q} \; \mathsf{Weak} \\ & \mathsf{Lemma} & & \mathsf{Epsilon} \; \mathsf{Nets} \end{array}$$

▶ Alon, Kalai, Meshulam and Matousek '02: a Fractional Helly Theorem implies a (p, q)-Theorem for hypergraphs.

First step

QFH with FH number
$$\frac{d(d+3)}{2}$$

Q Tverberg Sarkar, Xue and Soberón '19

$$\Rightarrow$$
 Q Selection \Rightarrow \exists of Q Weak Lemma Epsilon Nets

Second step

QFH with
$$\implies$$
 Bounded Q Fractional FH number $3d+1$ d^{-cd^2} -Transversal Number

J., Naszódi: QFH with large intersections

For every $\alpha \in (0,1]$ there is a $\beta \in (0,1]$ s.t. \mathcal{C} - a finite family of convex bodies in \mathbb{R}^d . If at least $\alpha(\frac{n}{d(d+3)})$ of the $\frac{d(d+3)}{2}$ -tuples from \mathcal{C} is such, that their intersection contains an ellipsoid of volume 1, then $\exists \mathcal{C}' \subset \mathcal{C}$ with $|\mathcal{C}'| \geq \beta |\mathcal{C}|$ s.t. $\cap \mathcal{C}'$ contains an ellipsoid of volume 1.

J., Naszódi: QFH with large intersections

For every $\alpha \in (0,1]$ there is a $\beta \in (0,1]$ s.t. \mathcal{C} - a finite family of convex bodies in \mathbb{R}^d . If at least $\alpha(\frac{n}{2})$ of the $\frac{d(d+3)}{2}$ -tuples from \mathcal{C} is such, that their intersection contains an ellipsoid of volume 1, then $\exists \mathcal{C}' \subset \mathcal{C}$ with $|\mathcal{C}'| \geq \beta |\mathcal{C}|$ s.t. $\cap \mathcal{C}'$ contains an ellipsoid of volume 1.

▶ As the classical proof, but with an ordering on the ellipsoids.

J., Naszódi: QFH with large intersections

For every $\alpha \in (0,1]$ there is a $\beta \in (0,1]$ s.t. \mathcal{C} - a finite family of convex bodies in \mathbb{R}^d . If at least $\alpha(\frac{n}{2})$ of the $\frac{d(d+3)}{2}$ -tuples from \mathcal{C} is such, that their intersection contains an ellipsoid of volume 1, then $\exists \mathcal{C}' \subset \mathcal{C}$ with $|\mathcal{C}'| \geq \beta |\mathcal{C}|$ s.t. $\cap \mathcal{C}'$ contains an ellipsoid of volume 1.

- As the classical proof, but with an ordering on the ellipsoids.
- Damásdi '17: If a convex body contains an ellipsoid of volume one, then it contains a unique ellipsoid of volume one, whose heighest point is the lowest.

J., Naszódi: QFH with large intersections

For every $\alpha \in (0,1]$ there is a $\beta \in (0,1]$ s.t. \mathcal{C} - a finite family of convex bodies in \mathbb{R}^d . If at least $\alpha(\frac{n}{d(d+3)})$ of the $\frac{d(d+3)}{2}$ -tuples from $\mathcal C$ is such, that their intersection contains an ellipsoid of volume 1, then $\exists \mathcal{C}' \subset \mathcal{C}$ with $|\mathcal{C}'| \geq \beta |\mathcal{C}|$ s.t. $\cap \mathcal{C}'$ contains an ellipsoid of volume 1.

- As the classical proof, but with an ordering on the ellipsoids.
- ▶ Damásdi '17: If a convex body contains an ellipsoid of volume one, then it contains a unique ellipsoid of volume one, whose heighest point is the lowest.
- Damásdi, Földvári and Naszódi '19: A similar proof of a Quantitative Colorful Helly Theorem with $\frac{d(d+3)}{2}$ colorclasses.

J., Naszódi: QFH with small intersections

For every $\alpha \in (0,1]$ there is a $\beta \in (0,1]$ s.t. If $\mathcal C$ is a finite family of convex bodies in $\mathbb R^d$ and if at least $\alpha\binom{n}{3d+1}$ of the 3d+1-tuples is such, that their intersection contains an ellipsoid of volume 1, then $\exists \mathcal C' \subset \mathcal C$ with $|\mathcal C'| \geq \beta |\mathcal C|$ s.t. $\cap \mathcal C'$ contains an ellipsoid of volume d^{-cd^2} .

J., Naszódi: QFH with small intersections

For every $\alpha \in (0,1]$ there is a $\beta \in (0,1]$ s.t. If $\mathcal C$ is a finite family of convex bodies in $\mathbb R^d$ and if at least $\alpha \binom{n}{3d+1}$ of the 3d+1-tuples is such, that their intersection contains an ellipsoid of volume 1, then $\exists \mathcal C' \subset \mathcal C$ with $|\mathcal C'| \geq \beta |\mathcal C|$ s.t. $\cap \mathcal C'$ contains an ellipsoid of volume d^{-cd^2} .

▶ Let $C = \{C_1, \dots, C_n\}$. We have at least $\alpha\binom{n}{3d+1}$ index sets $I \subset [n]$ with size 3d+1 for whom $\bigcap_{i \in I} C_i$ contains an ellipsoid of volume 1. We call these index sets good.

J., Naszódi: QFH with small intersections

For every $\alpha \in (0,1]$ there is a $\beta \in (0,1]$ s.t. If $\mathcal C$ is a finite family of convex bodies in $\mathbb R^d$ and if at least $\alpha \binom{n}{3d+1}$ of the 3d+1-tuples is such, that their intersection contains an ellipsoid of volume 1, then $\exists \mathcal C' \subset \mathcal C$ with $|\mathcal C'| \geq \beta |\mathcal C|$ s.t. $\cap \mathcal C'$ contains an ellipsoid of volume d^{-cd^2} .

- ▶ Let $C = \{C_1, \dots, C_n\}$. We have at least $\alpha \binom{n}{3d+1}$ index sets $I \subset [n]$ with size 3d+1 for whom $\bigcap_{i \in I} C_i$ contains an ellipsoid of volume 1. We call these index sets good.
- ▶ Quantitative Helly: for every good index set I there is a subset $S \subset I$ with size 2d for whom $vol(John(\cap_{i \in S} C_i)) \leq d^{c'd} vol(John(\cap_{i \in I} C_i))$.

J., Naszódi: QFH with small intersections

For every $\alpha \in (0,1]$ there is a $\beta \in (0,1]$ s.t. If $\mathcal C$ is a finite family of convex bodies in $\mathbb R^d$ and if at least $\alpha \binom{n}{3d+1}$ of the 3d+1-tuples is such, that their intersection contains an ellipsoid of volume 1, then $\exists \mathcal C' \subset \mathcal C$ with $|\mathcal C'| \geq \beta |\mathcal C|$ s.t. $\cap \mathcal C'$ contains an ellipsoid of volume d^{-cd^2} .

- ▶ Let $C = \{C_1, \dots, C_n\}$. We have at least $\alpha \binom{n}{3d+1}$ index sets $I \subset [n]$ with size 3d+1 for whom $\bigcap_{i \in I} C_i$ contains an ellipsoid of volume 1. We call these index sets good.
- ▶ **Quantitative Helly**: for every good index set I there is a subset $S \subset I$ with size 2d for whom $vol(John(\cap_{i \in S} C_i)) \le \frac{d^{c'}d}{d} vol(John(\cap_{i \in I} C_i))$.
- ► call S the seed of I.

▶ There is an S who is the seed of at least

$$\frac{\alpha \binom{n}{3d+1}}{\binom{n}{2d}} \ge \gamma \binom{n}{d+1}$$

► There is an *S* who is the seed of at least

$$\frac{\alpha \binom{n}{3d+1}}{\binom{n}{2d}} \ge \gamma \binom{n}{d+1}$$

of the good index sets. Call them $l_1, \ldots, l_{\gamma\binom{n}{d+1}}$.

▶ Denote the John ellipsoid of the intersection $\bigcap_{i \in S} C_i$ by \mathcal{E} and the John ellipsoid of $\bigcap_{i \in I_i} C_i$ by \mathcal{E}_i

► There is an *S* who is the seed of at least

$$\frac{\alpha \binom{n}{3d+1}}{\binom{n}{2d}} \ge \gamma \binom{n}{d+1}$$

- ▶ Denote the John ellipsoid of the intersection $\bigcap_{i \in S} C_i$ by \mathcal{E} and the John ellipsoid of $\bigcap_{i \in I_i} C_i$ by \mathcal{E}_j
- ▶ **Lemma**₁ : since $\mathcal{E}_j \subseteq \cap_{i \in S} C_i$, there is a $v_j \in \mathbb{R}^d$ such that $d^{-cd}\mathcal{E} + v_i \subseteq \mathcal{E}_i$.

► There is an S who is the seed of at least

$$\frac{\alpha \binom{n}{3d+1}}{\binom{n}{2d}} \ge \gamma \binom{n}{d+1}$$

- ▶ Denote the John ellipsoid of the intersection $\bigcap_{i \in S} C_i$ by \mathcal{E} and the John ellipsoid of $\bigcap_{i \in I_i} C_i$ by \mathcal{E}_i
- ▶ **Lemma**₁ : since $\mathcal{E}_j \subseteq \bigcap_{i \in S} C_i$, there is a $v_j \in \mathbb{R}^d$ such that $d^{-cd}\mathcal{E} + v_i \subseteq \mathcal{E}_i$.
- ▶ so at least $\gamma\binom{n}{d+1}$ of the (d+1)-wise intersections contain a translate of $d^{-cd}\mathcal{E}$.

▶ There is an S who is the seed of at least

$$\frac{\alpha \binom{n}{3d+1}}{\binom{n}{2d}} \ge \gamma \binom{n}{d+1}$$

- ▶ Denote the John ellipsoid of the intersection $\bigcap_{i \in S} C_i$ by \mathcal{E} and the John ellipsoid of $\bigcap_{i \in I_i} C_i$ by \mathcal{E}_i
- ▶ **Lemma**₁ : since $\mathcal{E}_j \subseteq \bigcap_{i \in S} C_i$, there is a $v_j \in \mathbb{R}^d$ such that $d^{-cd}\mathcal{E} + v_i \subseteq \mathcal{E}_i$.
- ▶ so at least $\gamma \binom{n}{d+1}$ of the (d+1)-wise intersections contain a translate of $d^{-cd}\mathcal{E}$.
- ▶ **Lemma**₂: there is a translate of $d^{-cd}\mathcal{E}$ which is contained in at least βn of the sets from \mathcal{C} .

► There is an S who is the seed of at least

$$\frac{\alpha \binom{n}{3d+1}}{\binom{n}{2d}} \ge \gamma \binom{n}{d+1}$$

- ▶ Denote the John ellipsoid of the intersection $\bigcap_{i \in S} C_i$ by \mathcal{E} and the John ellipsoid of $\bigcap_{i \in I_i} C_i$ by \mathcal{E}_i
- ▶ **Lemma**₁ : since $\mathcal{E}_j \subseteq \bigcap_{i \in S} C_i$, there is a $v_j \in \mathbb{R}^d$ such that $d^{-cd}\mathcal{E} + v_i \subseteq \mathcal{E}_i$.
- ▶ so at least $\gamma\binom{n}{d+1}$ of the (d+1)-wise intersections contain a translate of $d^{-cd}\mathcal{E}$.
- ▶ **Lemma**₂: there is a translate of $d^{-cd}\mathcal{E}$ which is contained in at least βn of the sets from \mathcal{C} .
- ▶ since $vol(\mathcal{E}) \ge 1$, we have $vol(d^{-cd}\mathcal{E}) \ge (d^{-cd})^d = d^{-cd^2}$.

▶ There is an *S* who is the seed of at least

$$\frac{\alpha \binom{n}{3d+1}}{\binom{n}{2d}} \ge \gamma \binom{n}{d+1}$$

- ▶ Denote the John ellipsoid of the intersection $\bigcap_{i \in S} C_i$ by \mathcal{E} and the John ellipsoid of $\bigcap_{i \in I_i} C_i$ by \mathcal{E}_i
- ▶ **Lemma**₁ : since $\mathcal{E}_j \subseteq \bigcap_{i \in S} C_i$, there is a $v_j \in \mathbb{R}^d$ such that $d^{-cd}\mathcal{E} + v_i \subseteq \mathcal{E}_i$.
- ▶ so at least $\gamma\binom{n}{d+1}$ of the (d+1)-wise intersections contain a translate of $d^{-cd}\mathcal{E}$.
- ▶ **Lemma**₂: there is a translate of $d^{-cd}\mathcal{E}$ which is contained in at least βn of the sets from \mathcal{C} .
- ▶ since $vol(\mathcal{E}) \ge 1$, we have $vol(d^{-cd}\mathcal{E}) \ge (d^{-cd})^d = d^{-cd^2}$.

► There is an S who is the seed of at least

$$\frac{\alpha \binom{n}{3d+1}}{\binom{n}{2d}} \ge \gamma \binom{n}{d+1}$$

of the good index sets. Call them $l_1, \ldots, l_{\gamma \binom{n}{d+1}}$.

- ▶ Denote the John ellipsoid of the intersection $\bigcap_{i \in S} C_i$ by \mathcal{E} and the John ellipsoid of $\bigcap_{i \in I_i} C_i$ by \mathcal{E}_i
- ▶ **Lemma**₁ : since $\mathcal{E}_j \subseteq \bigcap_{i \in S} C_i$, there is a $v_j \in \mathbb{R}^d$ such that $d^{-cd}\mathcal{E} + v_i \subseteq \mathcal{E}_i$.
- ▶ so at least $\gamma\binom{n}{d+1}$ of the (d+1)-wise intersections contain a translate of $d^{-cd}\mathcal{E}$.
- ▶ **Lemma**₂: there is a translate of $d^{-cd}\mathcal{E}$ which is contained in at least βn of the sets from \mathcal{C} .
- ▶ since $vol(\mathcal{E}) \ge 1$, we have $vol(d^{-cd}\mathcal{E}) \ge (d^{-cd})^d = d^{-cd^2}$.

Thank you!