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kenyon’s problem

A closed piecewise linear curve is called integral if it is
comprised of segments of integer length.

Let S ⊂ R3 be a PL-surface realized in R3 with the boundary
∂S = γ, and with all facets comprised of unit equilateral
triangles. In this case we say that S is a dome over γ and that
γ can be domed.

Question (Kenyon, c. 2005)
Can every integral closed curve γ ⊂ R3 be domed?
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real-life domes

Buckminster Fuller’s Dome over Manhattan (1960)
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real-life domes

Buckminster Fuller’s Dome over Manhattan (1960)

Geodesic domes: Montreal Biosphère, Buckminster Fuller’s dome, Geometrica’s Freedome
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domes over rhombi

A rhombus is a closed curve ρ ⊂ R3 with four unit edges. This
is a 2-parameter family of space quadrilaterals ρ(a,b)
parameterized by lengths of diagonals a and b.

Lemma
For a fixed a, 0 < a < 2, a /∈ Q, the set of values of b ≥ 0 for
which ρ(a,b) can be domed is dense in

[
0,
√
4− a2

]
.
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domes over regular polygons

Theorem (G.-Pak, 2020)
Every regular integral n-gon in the plane can be domed.
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domes over regular polygons

Theorem (G.-Pak, 2020)
Every regular integral n-gon in the plane can be domed.

Add triangles forming a small angle θ with the plane.

Add almost planar rhombi until they reach the center.
Continuously vary θ to make rhombi meet above the center.
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curves that can be domed are dense

Theorem (G.-Pak, 2020)
For every integral curve γ ⊂ R3 and ε > 0, there is an integral
curve γ′ ⊂ R3 of equal length, such that |γ, γ′|F < ε and γ′ can
be domed.

Here |γ, γ′|F is the Fréchet distance |γ, γ′|F = max1≤i≤n |vi, v′i|.
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For every integral curve γ ⊂ R3 and ε > 0, there is an integral
curve γ′ ⊂ R3 of equal length, such that |γ, γ′|F < ε and γ′ can
be domed.

Here |γ, γ′|F is the Fréchet distance |γ, γ′|F = max1≤i≤n |vi, v′i|.

Step 1. Curve → Almost planar curve via flips

Step 2. Almost planar curve → Almost planar curve with
distances ≤

√
5/4 via flips (use Steinitz+Bergström)

v

w

v'
w'

w

v'

γ γ γ
1 2 3
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curves that can be domed are dense (continued)

Step 3. Split the curve into a pentagon and a shorter curve.
Use an ad-hoc construction for pentagons and the inductive
hypothesis for a shorter curve.

z

w1

γ'

z
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w3 w4

η

w6

w7

w2 w5

w3 w4

ρ ρ
1 2

γ'
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curves that can be domed are dense (continued)

Step 3. Split the curve into a pentagon and a shorter curve.
Use an ad-hoc construction for pentagons and the inductive
hypothesis for a shorter curve.

z

w1

γ'

z

w1

w2

w5

w3 w4

η

w6

w7

w2 w5

w3 w4

ρ ρ
1 2

γ'

Step 4. Fix the combinatorial decomposition. Slightly alter the
curve to ensure that everything is generic and apply the
Rhombus lemma at all steps.
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no domes over rhombi

Theorem (G.-Pak, 2020)
Let ρ(a,b) ⊂ R3 be a rhombus with diagonals a,b > 0.
Suppose ρ(a,b) can be domed. Then there is a nonzero
polynomial P ∈ Q[x, y], such that P(a2,b2) = 0.

Corollary (G.-Pak, 2020)
Let s /∈ Q and t/s ∈ Q. Then ρ(s, t) cannot be domed.

Corollary (G.-Pak, 2020)
Let s /∈ Q, and let s2 and t2 be algebraically dependent with
the minimal polynomial Q(s2, t2) = 0. Suppose Q ∈ Q[x, y] is
given by

Q(x, y) = xkym−k +
∑

i+j<m
cijxiyj ,

for some 0 ≤ k ≤ m. Then ρ(s, t) cannot be domed.
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periodic surfaces

K is a simplicial connected pure 2-dimensional complex with a
free action of the group G = Z⊕ Z with generators a and b.

θ : K → R3 is linear on each simplex of K and equivariant with
respect to the action of Z⊕ Z, such that a and b act by
translations with vectors α and β.

The pair (K, θ) is called a doubly periodic triangular surface.
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g-g theorem

Let G(K) be the set of all possible Gram matrices formed by
vectors α and β for all doubly periodic triangular surfaces
(K, θ). Denote g11 = |α|2, g12 = g21 = α · β, g22 = |β|2.

Theorem (A. Gaifullin – S. Gaifullin, 2014)
For K homeomorphic to R2, there is a one-dimensional real
affine algebraic subvariety containing G(K). In particular, the
entries of each Gram matrix G from G(K) satisfy a system of
two non-trivial polynomial equations with integer coefficients:P(g11, g12, g22) = 0

Q(g11, g12, g22) = 0.
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disk domes over rhombi

Proposition
Suppose a rhombus γ = ρ(s, t) can be domed by a surface
homeomorphic to a disk. Then there exists a polynomial
F ∈ Q[x, y], such that F(s2, t2) = 0.

Proof.
Attach a dome to each copy of γ and −γ. The resulting surface
is doubly periodic with vectors α and β formed by the
diagonals of γ. By the G-G theorem, either P or Q is not trivial
when α · β = 0.

γ γ-

βα
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g-g problem

Theorem (A. Gaifullin – S. Gaifullin, 2014)
Every embedded doubly periodic triangular surface
homeomorphic to a plane has at most one-dimensional
doubly periodic flex.

Theorem (G.-Pak, 2020)
There is a doubly periodic triangular surface whose doubly
periodic flex is three-dimensional.
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g-g problem

Theorem (A. Gaifullin – S. Gaifullin, 2014)
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g-g problem

Theorem (A. Gaifullin – S. Gaifullin, 2014)
Every embedded doubly periodic triangular surface
homeomorphic to a plane has at most one-dimensional
doubly periodic flex.

Theorem (G.-Pak, 2020)
There is a doubly periodic triangular surface whose doubly
periodic flex is three-dimensional.

Conclusion: the general version of the G-G theorem does not
work. We need a different result.
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machinery for the algebraic approach

∙ Places of fields.
∙ Induction over the combinatorial structure of a surface via
surface surgeries and flips. (Here it is important that the
surface is based on rhombi).

∙ Lemma by Connelly-Sabitov-Walz (1997) on the existence
of a diagonal where a place is finite.

∙ Construction of a polynomial similar to Gaifullin-Gaifullin.

a'

b'

c'

a

b

c
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conjectures

Conjecture (1)
A triangle ∆ with side lengths (2, 2, 1) cannot be domed.

Proposition
If ∆ can be domed, then so can every integer-sided triangle.

Conjecture (2)
Every closed dome S ⊂ R3 is rigid.

Proposition
Conjecture (2) implies Conjecture (1).
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Conjecture (1)
A triangle ∆ with side lengths (2, 2, 1) cannot be domed.

Proposition
If ∆ can be domed, then so can every integer-sided triangle.

Conjecture (2)
Every closed dome S ⊂ R3 is rigid.

Proposition
Conjecture (2) implies Conjecture (1).

Proof.
Four copies of triangles (3, 7, 7) and (4, 7, 7) form a Bricard
octahedron.
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more conjectures

Conjecture (2)
Every closed dome S ⊂ R3 is rigid.
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more conjectures

Conjecture (1)
A triangle ∆ with side lengths (2, 2, 1) cannot be domed.

Conjecture (4)
Let ρ♢ = [uvwx] ⊂ R3 be the planar rhombus with all side
lengths 2 and |xv| = 1. Then there is a coloring
χ : R3 → {1, 2, 3} with no rainbow unit triangles, and such that
χ(u) = χ(v) = 1, χ(w) = 2, χ(x) = 3.

2

1 12

3

1
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even more conjectures

Conjecture
There are unit triangles ∆1,∆2 ⊂ R3, such that Υ = ∆1 ∪∆2
cannot be domed.

Conjecture (”cobordism for domes”)
For every integral curve γ, there is a unit rhombus ρ, and a
dome over γ ∪ ρ.
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even more conjectures

Conjecture
There are unit triangles ∆1,∆2 ⊂ R3, such that Υ = ∆1 ∪∆2
cannot be domed.

Conjecture (”cobordism for domes”)
For every integral curve γ, there is a unit rhombus ρ, and a
dome over γ ∪ ρ.

Conjecture
Let γ = [v1 . . . vn] be an integral curve which can be domed,
where n ≥ 5. Denote by dij = |vivj| the diagonals of γ. Then
there is a nonzero polynomial P /∈ CMn, such that
P
(
d21,3,d21,4, . . . ,d2n−2,n

)
= 0, where CMn is the ideal generated

by all Cayley-Menger determinants.
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THANK YOU!
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