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PLAN

1. Kenyon's problem
2. Existence of domes
3. Non-existence of domes

4. Open problems



KENYON’'S PROBLEM

A closed piecewise linear curve is called integral if it is
comprised of segments of integer length.

Let S ¢ R3 be a PL-surface realized in R*® with the boundary
0S = v, and with all facets comprised of unit equilateral
triangles. In this case we say that S is a dome over v and that
~ can be domed.
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REAL-LIFE DOMES
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Buckminster Fuller's Dome over Manhattan (1960)
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Geodesic domes: Montreal Biosphére, Buckminster Fuller's dome, Geometrica's Freedome



DOMES OVER RHOMBI

A rhombus is a closed curve p c R3 with four unit edges. This
Is a 2-parameter family of space quadrilaterals p(a, b)
parameterized by lengths of diagonals a and b.
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DOMES OVER REGULAR POLYGONS

Theorem (G.-Pak, 2020)
Every regular integral n-gon in the plane can be domed.
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Theorem (G.-Pak, 2020)
Every regular integral n-gon in the plane can be domed.
Add triangles forming a small angle 6 with the plane.

Add almost planar rhombi until they reach the center.
Continuously vary # to make rhombi meet above the center.




CURVES THAT CAN BE DOMED ARE DENSE

Theorem (G.-Pak, 2020)

For every integral curve vy C R® and € > 0, there is an integral

curve 7' C R® of equal length, such that |y,~'|f < ¢ and 4’ can
be domed.

Here |v,+|r is the Fréchet distance |y,~'[f = maxj<i<p |Vi, Vi



CURVES THAT CAN BE DOMED ARE DENSE

Theorem (G.-Pak, 2020)

For every integral curve vy C R® and € > 0, there is an integral
curve 7' C R® of equal length, such that |y,~'|f < ¢ and 4’ can
be domed.

Here |v,+|r is the Fréchet distance |y,~'[f = maxj<i<p |Vi, Vi

Step 1. Curve — Almost planar curve via flips

Step 2. Almost planar curve — Almost planar curve with
distances < 1/5/4 via flips (use Steinitz+Bergstrom)



CURVES THAT CAN BE DOMED ARE DENSE (CONTINUED)

Step 3. Split the curve into a pentagon and a shorter curve.
Use an ad-hoc construction for pentagons and the inductive
hypothesis for a shorter curve.
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Step 3. Split the curve into a pentagon and a shorter curve.
Use an ad-hoc construction for pentagons and the inductive
hypothesis for a shorter curve.
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Step 4. Fix the combinatorial decomposition. Slightly alter the
curve to ensure that everything is generic and apply the
Rhombus lemma at all steps.



NO DOMES OVER RHOMBI

Theorem (G.-Pak, 2020)

Let p(a,b) C R3 be a rhombus with diagonals a,b > 0.
Suppose p(a,b) can be domed. Then there is a nonzero
polynomial P € Q[x,y], such that P(a?, b?) = 0.
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Theorem (G.-Pak, 2020)

Let p(a,b) C R3 be a rhombus with diagonals a,b > 0.
Suppose p(a,b) can be domed. Then there is a nonzero
polynomial P € Q[x,y], such that P(a?, b?) = 0.

Corollary (G.-Pak, 2020)
Let s ¢ Q and t/s € Q. Then p(s,t) cannot be domed.

Corollary (G.-Pak, 2020)
Let s ¢ Q, and let s? and t? be algebraically dependent with
the minimal polynomial Q(s?,t?) = 0. Suppose Q € QI[x,V] is
given by

Qxy) = XYM+ > gixy,

i+j<m

for some 0 < k < m. Then p(s,t) cannot be domed.



PERIODIC SURFACES

K'is a simplicial connected pure 2-dimensional complex with a
free action of the group G = Z & Z with generators a and b.

6 : K — R3is linear on each simplex of K and equivariant with
respect to the action of Z @ Z, such that a and b act by
translations with vectors v and .

The pair (K, 0) is called a doubly periodic triangular surface.
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G-G THEOREM

Let G(K) be the set of all possible Gram matrices formed by
vectors « and $ for all doubly periodic triangular surfaces

(K,0). Denote g1 = |af?, 8o = g1 = a - B, 8 = |BI*.
Theorem (A. Gaifullin - S. Gaifullin, 2014)

For K homeomorphic to R?, there is a one-dimensional real
affine algebraic subvariety containing G(K). In particular, the

entries of each Gram matrix G from G(K) satisfy a system of
two non-trivial polynomial equations with integer coefficients:

P(g1,812,82) =0
Q(gn, g1, 82) = 0.



DISK DOMES OVER RHOMBI

Proposition

Suppose a rhombus v = p(s, t) can be domed by a surface
homeomorphic to a disk. Then there exists a polynomial
F € Q[x,y], such that F(s?,t?) = 0.



DISK DOMES OVER RHOMBI

Proposition

Suppose a rhombus v = p(s,t) can be domed by a surface
homeomorphic to a disk. Then there exists a polynomial
F € Q[x,y], such that F(s?,t?) = 0.

Proof.

Attach a dome to each copy of v and —~. The resulting surface
is doubly periodic with vectors o and 8 formed by the
diagonals of ~. By the G-G theorem, either P or Q is not trivial
when a - 8 = 0.




G-G PROBLEM
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Every embedded doubly periodic triangular surface

homeomorphic to a plane has at most one-dimensional
doubly periodic flex.
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G-G PROBLEM

Theorem (A. Gaifullin - S. Gaifullin, 2014)

Every embedded doubly periodic triangular surface
homeomorphic to a plane has at most one-dimensional
doubly periodic flex.

Theorem (G.-Pak, 2020)

There is a doubly periodic triangular surface whose doubly
periodic flex is three-dimensional.

Conclusion: the general version of the G-G theorem does not
work. We need a different result.



MACHINERY FOR THE ALGEBRAIC APPROACH

- Places of fields.

- Induction over the combinatorial structure of a surface via
surface surgeries and flips. (Here it is important that the
surface is based on rhombi).

- Lemma by Connelly-Sabitov-Walz (1997) on the existence
of a diagonal where a place is finite.

- Construction of a polynomial similar to Gaifullin-Gaifullin.
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Conjecture (1)
A triangle A with side lengths (2,2,1) cannot be domed.

Proposition
If A can be domed, then so can every integer-sided triangle.

Conjecture (2)
Every closed dome S C R? is rigid.

Proposition
Conjecture (2) implies Conjecture (1).
Proof.

Four copies of triangles (3,7,7) and (4,7,7) form a Bricard
octahedron. O
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Conjecture (1)
A triangle A with side lengths (2,2,1) cannot be domed.

Conjecture (4)

Let po = [uvwx] C R® be the planar rhombus with all side
lengths 2 and |xv| = 1. Then there is a coloring

x : R3 — {1,2,3} with no rainbow unit triangles, and such that
x(u) = x(v) =1, x(w) =2, x(x) = 3.
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MORE CONJECTURES

Conjecture (1)
A triangle A with side lengths (2,2,1) cannot be domed.
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lengths 2 and |xv| = 1. Then there is a coloring
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EVEN MORE CONJECTURES

Conjecture

There are unit triangles A;, A, C R3, suchthat T = AU A,
cannot be domed.

Conjecture ("cobordism for domes”)

For every integral curve =, there is a unit rhombus p, and a
dome over v U p.

Conjecture

Let v = [vy...Vy] be an integral curve which can be domed,
where n > 5. Denote by d;; = |v;vj| the diagonals of 5. Then
there is a nonzero polynomial P ¢ CMj, such that
P(d75,d7,,...,d5_,,) = 0, where CM, is the ideal generated
by all Cayley-Menger determinants.



THANK YOU!



