DOMES OVER CURVES

Alexey Glazyrin, UTRGV (joint with Igor Pak, UCLA) December 4, 2020 Combinatorics and Geometry Days III at MIPT

PLAN

- 1. Kenyon's problem
- 2. Existence of domes
- 3. Non-existence of domes
- 4. Open problems

KENYON'S PROBLEM

A closed piecewise linear curve is called integral if it is comprised of segments of integer length.

Let $S \subset \mathbb{R}^3$ be a PL-surface realized in \mathbb{R}^3 with the boundary $\partial S = \gamma$, and with all facets comprised of unit equilateral triangles. In this case we say that S is a dome over γ and that γ can be domed.

KENYON'S PROBLEM

A closed piecewise linear curve is called integral if it is comprised of segments of integer length.

Let $S \subset \mathbb{R}^3$ be a PL-surface realized in \mathbb{R}^3 with the boundary $\partial S = \gamma$, and with all facets comprised of unit equilateral triangles. In this case we say that S is a dome over γ and that γ can be domed.

Question (Kenyon, c. 2005)

Can every integral closed curve $\gamma \subset \mathbb{R}^3$ be domed?

KENYON'S PROBLEM

A closed piecewise linear curve is called integral if it is comprised of segments of integer length.

Let $S \subset \mathbb{R}^3$ be a PL-surface realized in \mathbb{R}^3 with the boundary $\partial S = \gamma$, and with all facets comprised of unit equilateral triangles. In this case we say that S is a dome over γ and that γ can be domed.

Question (Kenyon, c. 2005)

Can every integral closed curve $\gamma \subset \mathbb{R}^3$ be domed?

REAL-LIFE DOMES

Buckminster Fuller's Dome over Manhattan (1960)

REAL-LIFE DOMES

Buckminster Fuller's Dome over Manhattan (1960)

Geodesic domes: Montreal Biosphère, Buckminster Fuller's dome, Geometrica's Freedome

DOMES OVER RHOMBI

A rhombus is a closed curve $\rho \subset \mathbb{R}^3$ with four unit edges. This is a 2-parameter family of space quadrilaterals $\rho(a,b)$ parameterized by lengths of diagonals a and b.

DOMES OVER RHOMBI

A rhombus is a closed curve $\rho \subset \mathbb{R}^3$ with four unit edges. This is a 2-parameter family of space quadrilaterals $\rho(a,b)$ parameterized by lengths of diagonals a and b.

Lemma

For a fixed a, 0 < a < 2, $a \notin \overline{\mathbb{Q}}$, the set of values of $b \ge 0$ for which $\rho(a,b)$ can be domed is dense in $\left[0,\sqrt{4-a^2}\right]$.

4

DOMES OVER RHOMBI

A rhombus is a closed curve $\rho \subset \mathbb{R}^3$ with four unit edges. This is a 2-parameter family of space quadrilaterals $\rho(a,b)$ parameterized by lengths of diagonals a and b.

Lemma

For a fixed a, 0 < a < 2, $a \notin \overline{\mathbb{Q}}$, the set of values of $b \ge 0$ for which $\rho(a,b)$ can be domed is dense in $\left[0,\sqrt{4-a^2}\right]$.

4

DOMES OVER REGULAR POLYGONS

Theorem (G.-Pak, 2020)

Every regular integral n-gon in the plane can be domed.

DOMES OVER REGULAR POLYGONS

Theorem (G.-Pak, 2020)

Every regular integral n-gon in the plane can be domed.

Add triangles forming a small angle θ with the plane.

Add almost planar rhombi until they reach the center. Continuously vary θ to make rhombi meet above the center.

CURVES THAT CAN BE DOMED ARE DENSE

Theorem (G.-Pak, 2020)

For every integral curve $\gamma \subset \mathbb{R}^3$ and $\varepsilon > 0$, there is an integral curve $\gamma' \subset \mathbb{R}^3$ of equal length, such that $|\gamma, \gamma'|_{\mathsf{F}} < \varepsilon$ and γ' can be domed.

Here $|\gamma,\gamma'|_{\mathsf{F}}$ is the Fréchet distance $|\gamma,\gamma'|_{\mathsf{F}} = \max_{1 \leq i \leq n} |\mathsf{v}_i,\mathsf{v}_i'|$.

CURVES THAT CAN BE DOMED ARE DENSE

Theorem (G.-Pak, 2020)

For every integral curve $\gamma \subset \mathbb{R}^3$ and $\varepsilon > 0$, there is an integral curve $\gamma' \subset \mathbb{R}^3$ of equal length, such that $|\gamma, \gamma'|_{\mathsf{F}} < \varepsilon$ and γ' can be domed.

Here $|\gamma, \gamma'|_F$ is the Fréchet distance $|\gamma, \gamma'|_F = \max_{1 \le i \le n} |v_i, v_i'|$.

Step 1. Curve \rightarrow Almost planar curve via flips

Step 2. Almost planar curve \rightarrow Almost planar curve with distances $\leq \sqrt{5/4}$ via flips (use Steinitz+Bergström)

CURVES THAT CAN BE DOMED ARE DENSE (CONTINUED)

Step 3. Split the curve into a pentagon and a shorter curve. Use an ad-hoc construction for pentagons and the inductive hypothesis for a shorter curve.

CURVES THAT CAN BE DOMED ARE DENSE (CONTINUED)

Step 3. Split the curve into a pentagon and a shorter curve. Use an ad-hoc construction for pentagons and the inductive hypothesis for a shorter curve.

Step 4. Fix the combinatorial decomposition. Slightly alter the curve to ensure that everything is generic and apply the Rhombus lemma at all steps.

NO DOMES OVER RHOMBI

Theorem (G.-Pak, 2020)

Let $\rho(a,b) \subset \mathbb{R}^3$ be a rhombus with diagonals a,b>0. Suppose $\rho(a,b)$ can be domed. Then there is a nonzero polynomial $P \in \mathbb{Q}[x,y]$, such that $P(a^2,b^2)=0$.

NO DOMES OVER RHOMBI

Theorem (G.-Pak, 2020)

Let $\rho(a,b) \subset \mathbb{R}^3$ be a rhombus with diagonals a,b>0. Suppose $\rho(a,b)$ can be domed. Then there is a nonzero polynomial $P \in \mathbb{Q}[x,y]$, such that $P(a^2,b^2)=0$.

Corollary (G.-Pak, 2020)

Let $s \notin \overline{\mathbb{Q}}$ and $t/s \in \overline{\mathbb{Q}}$. Then $\rho(s,t)$ cannot be domed.

NO DOMES OVER RHOMBI

Theorem (G.-Pak, 2020)

Let $\rho(a,b) \subset \mathbb{R}^3$ be a rhombus with diagonals a,b>0. Suppose $\rho(a,b)$ can be domed. Then there is a nonzero polynomial $P \in \mathbb{Q}[x,y]$, such that $P(a^2,b^2)=0$.

Corollary (G.-Pak, 2020)

Let $s \notin \overline{\mathbb{Q}}$ and $t/s \in \overline{\mathbb{Q}}$. Then $\rho(s,t)$ cannot be domed.

Corollary (G.-Pak, 2020)

Let $s \notin \overline{\mathbb{Q}}$, and let s^2 and t^2 be algebraically dependent with the minimal polynomial $Q(s^2,t^2)=0$. Suppose $Q\in \overline{\mathbb{Q}}[x,y]$ is given by

$$Q(x,y) \, = \, x^k y^{m-k} \, + \, \sum_{i+i < m} \, c_{ij} x^i y^j \, ,$$

for some $0 \le k \le m$. Then $\rho(s,t)$ cannot be domed.

PERIODIC SURFACES

K is a simplicial connected pure 2-dimensional complex with a free action of the group $G=\mathbb{Z}\oplus\mathbb{Z}$ with generators a and b.

 $\theta: \mathsf{K} \to \mathbb{R}^3$ is linear on each simplex of K and equivariant with respect to the action of $\mathbb{Z} \oplus \mathbb{Z}$, such that a and b act by translations with vectors α and β .

The pair (K, θ) is called a doubly periodic triangular surface.

9

PERIODIC SURFACES

K is a simplicial connected pure 2-dimensional complex with a free action of the group $G=\mathbb{Z}\oplus\mathbb{Z}$ with generators a and b.

 $\theta: K \to \mathbb{R}^3$ is linear on each simplex of K and equivariant with respect to the action of $\mathbb{Z} \oplus \mathbb{Z}$, such that a and b act by translations with vectors α and β .

The pair (K, θ) is called a doubly periodic triangular surface.

G-G THEOREM

Let $\mathcal{G}(K)$ be the set of all possible Gram matrices formed by vectors α and β for all doubly periodic triangular surfaces (K, θ) . Denote $g_{11} = |\alpha|^2$, $g_{12} = g_{21} = \alpha \cdot \beta$, $g_{22} = |\beta|^2$.

Theorem (A. Gaifullin - S. Gaifullin, 2014)

For K homeomorphic to \mathbb{R}^2 , there is a one-dimensional real affine algebraic subvariety containing $\mathcal{G}(K)$. In particular, the entries of each Gram matrix G from $\mathcal{G}(K)$ satisfy a system of two non-trivial polynomial equations with integer coefficients:

$$\begin{cases} P(g_{11},g_{12},g_{22}) = 0 \\ Q(g_{11},g_{12},g_{22}) = 0. \end{cases}$$

DISK DOMES OVER RHOMBI

Proposition

Suppose a rhombus $\gamma = \rho(s,t)$ can be domed by a surface homeomorphic to a disk. Then there exists a polynomial $F \in \mathbb{Q}[x,y]$, such that $F(s^2,t^2) = 0$.

DISK DOMES OVER RHOMBI

Proposition

Suppose a rhombus $\gamma=\rho(s,t)$ can be domed by a surface homeomorphic to a disk. Then there exists a polynomial $F\in\mathbb{Q}[x,y]$, such that $F(s^2,t^2)=0$.

Proof.

Attach a dome to each copy of γ and $-\gamma$. The resulting surface is doubly periodic with vectors α and β formed by the diagonals of γ . By the G-G theorem, either P or Q is not trivial when $\alpha \cdot \beta = 0$.

Theorem (A. Gaifullin - S. Gaifullin, 2014)

Every embedded doubly periodic triangular surface homeomorphic to a plane has at most one-dimensional doubly periodic flex.

Theorem (A. Gaifullin - S. Gaifullin, 2014)

Every embedded doubly periodic triangular surface homeomorphic to a plane has at most one-dimensional doubly periodic flex.

Theorem (G.-Pak, 2020)

There is a doubly periodic triangular surface whose doubly periodic flex is three-dimensional.

Theorem (A. Gaifullin – S. Gaifullin, 2014)

Every embedded doubly periodic triangular surface homeomorphic to a plane has at most one-dimensional doubly periodic flex.

Theorem (G.-Pak, 2020)

There is a doubly periodic triangular surface whose doubly periodic flex is three-dimensional.

Theorem (A. Gaifullin – S. Gaifullin, 2014)

Every embedded doubly periodic triangular surface homeomorphic to a plane has at most one-dimensional doubly periodic flex.

Theorem (G.-Pak, 2020)

There is a doubly periodic triangular surface whose doubly periodic flex is three-dimensional.

Theorem (A. Gaifullin – S. Gaifullin, 2014)

Every embedded doubly periodic triangular surface homeomorphic to a plane has at most one-dimensional doubly periodic flex.

Theorem (G.-Pak, 2020)

There is a doubly periodic triangular surface whose doubly periodic flex is three-dimensional.

Conclusion: the general version of the G-G theorem does not work. We need a different result.

MACHINERY FOR THE ALGEBRAIC APPROACH

- · Places of fields.
- Induction over the combinatorial structure of a surface via surface surgeries and flips. (Here it is important that the surface is based on rhombi).
- · Lemma by Connelly-Sabitov-Walz (1997) on the existence of a diagonal where a place is finite.
- · Construction of a polynomial similar to Gaifullin-Gaifullin.

Conjecture (1)

A triangle Δ with side lengths (2,2,1) cannot be domed.

Conjecture (1)

A triangle Δ with side lengths (2,2,1) cannot be domed.

Proposition

If Δ can be domed, then so can every integer-sided triangle.

Conjecture (1)

A triangle Δ with side lengths (2,2,1) cannot be domed.

Proposition

If Δ can be domed, then so can every integer-sided triangle.

Conjecture (2)

Every closed dome $S \subset \mathbb{R}^3$ is rigid.

Conjecture (1)

A triangle Δ with side lengths (2,2,1) cannot be domed.

Proposition

If Δ can be domed, then so can every integer-sided triangle.

Conjecture (2)

Every closed dome $S \subset \mathbb{R}^3$ is rigid.

Proposition

Conjecture (2) implies Conjecture (1).

Conjecture (1)

A triangle Δ with side lengths (2,2,1) cannot be domed.

Proposition

If Δ can be domed, then so can every integer-sided triangle.

Conjecture (2)

Every closed dome $S \subset \mathbb{R}^3$ is rigid.

Proposition

Conjecture (2) implies Conjecture (1).

Proof.

Four copies of triangles (3,7,7) and (4,7,7) form a Bricard octahedron.

Conjecture (1)

A triangle Δ with side lengths (2,2,1) cannot be domed.

Proposition

If Δ can be domed, then so can every integer-sided triangle.

Conjecture (2)

Every closed dome $S \subset \mathbb{R}^3$ is rigid.

Proposition

Conjecture (2) implies Conjecture (1).

Conjecture (2)

Every closed dome $S\subset\mathbb{R}^3$ is rigid.

Conjecture (2)

Every closed dome $S \subset \mathbb{R}^3$ is rigid.

Denote by \mathcal{A} the set of all $a \ge 0$, such that the planar rhombus $\rho(a, \sqrt{4-a^2})$ can be domed.

Conjecture (3)

Set A is countable.

Conjecture (2)

Every closed dome $S \subset \mathbb{R}^3$ is rigid.

Denote by \mathcal{A} the set of all $a \ge 0$, such that the planar rhombus $\rho(a, \sqrt{4-a^2})$ can be domed.

Conjecture (3)

Set A is countable.

Proposition

Conjecture (2) implies Conjecture (3).

Conjecture (1)

A triangle Δ with side lengths (2,2,1) cannot be domed.

Conjecture (1)

A triangle Δ with side lengths (2,2,1) cannot be domed.

Conjecture (4)

Let $\rho_{\lozenge} = [uvwx] \subset \mathbb{R}^3$ be the planar rhombus with all side lengths 2 and |xv| = 1. Then there is a coloring $\chi: \mathbb{R}^3 \to \{1,2,3\}$ with no rainbow unit triangles, and such that $\chi(u) = \chi(v) = 1$, $\chi(w) = 2$, $\chi(x) = 3$.

Conjecture (1)

A triangle Δ with side lengths (2,2,1) cannot be domed.

Conjecture (4)

Let $\rho_{\lozenge} = [uvwx] \subset \mathbb{R}^3$ be the planar rhombus with all side lengths 2 and |xv| = 1. Then there is a coloring $\chi: \mathbb{R}^3 \to \{1,2,3\}$ with no rainbow unit triangles, and such that $\chi(u) = \chi(v) = 1$, $\chi(w) = 2$, $\chi(x) = 3$.

Proposition

Conjecture (4) implies Conjecture (1).

EVEN MORE CONJECTURES

Conjecture

There are unit triangles $\Delta_1, \Delta_2 \subset \mathbb{R}^3$, such that $\Upsilon = \Delta_1 \cup \Delta_2$ cannot be domed.

EVEN MORE CONJECTURES

Conjecture

There are unit triangles $\Delta_1, \Delta_2 \subset \mathbb{R}^3$, such that $\Upsilon = \Delta_1 \cup \Delta_2$ cannot be domed.

Conjecture ("cobordism for domes")

For every integral curve γ , there is a unit rhombus ρ , and a dome over $\gamma \cup \rho$.

EVEN MORE CONJECTURES

Conjecture

There are unit triangles $\Delta_1, \Delta_2 \subset \mathbb{R}^3$, such that $\Upsilon = \Delta_1 \cup \Delta_2$ cannot be domed.

Conjecture ("cobordism for domes")

For every integral curve γ , there is a unit rhombus ρ , and a dome over $\gamma \cup \rho$.

Conjecture

Let $\gamma=[v_1\dots v_n]$ be an integral curve which can be domed, where $n\geq 5$. Denote by $d_{ij}=|v_iv_j|$ the diagonals of γ . Then there is a nonzero polynomial $P\notin \mathrm{CM}_n$, such that $P\big(d_{1,3}^2,d_{1,4}^2,\dots,d_{n-2,n}^2\big)=0$, where CM_n is the ideal generated by all Cayley-Menger determinants.

THANK YOU!