Helly-type theorems	Delone sets	Crystals	CUT-AND-PROJECT SETS	Open questions
000	00000	0000	0000	000000000

Helly numbers for crystals and cut-and-project sets

Alexey Garber

The University of Texas Rio Grande Valley

December 2, 2020 Combinatorics and Geometry Days III

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	Open questions
•00	00000	0000	0000	000000000

Helly theorem

Theorem (Helly, 1923)

Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^d . If any d + 1 sets from \mathcal{F} have a non-empty intersection, then all sets from \mathcal{F} have a non-empty intersection.

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	Open questions
000	00000	0000	0000	000000000

Helly-type theorem for lattices

Theorem (Doignon, 1973)

Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^d . If any 2^d sets from \mathcal{F} intersect at an integer point, then all sets from \mathcal{F} intersect at an integer point.

In both theorems the numbers d + 1 and 2^d can't be decreased.

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	OPEN QUESTIONS
00●	00000	0000	0000	000000000

Helly number for a set

Definition

Fix a set *S* in \mathbb{R}^d .

Let *n* be the smallest integer number such that the following condition hold for any finite family \mathcal{F} of convex sets in \mathbb{R}^d . If any *n* sets from \mathcal{F} intersect at a point of *S*, then all sets from \mathcal{F} intersect at a point of *S*.

This number *n* is called the **Helly number of** *S*, or just *S*-**Helly number**, or h(S).

If a number *n* from the definition doesn't exist, then $h(S) = \infty$.

 Helly-type theorems
 Delone sets
 Crystals
 Cut-and-project sets
 Open questions

 000
 0000
 0000
 0000
 00000
 00000

DISCRETE AND DELONE SETS

Definition

Set *S* in \mathbb{R}^d is called a **discrete set** if every ball in \mathbb{R}^d contains only finitely many points of *S*.

Definition

Set *S* in \mathbb{R}^d is called a **Delone set** if

- distance between two different points of *S* is greater than some fixed positive number;
- ▶ radius of a ball in ℝ^d without points of *S* is less than some fixed positive number.

Sometimes Delone sets are called separated nets which are **uniformly discrete** and **relatively dense**.

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	OPEN QUESTIONS
000	00000	0000	0000	000000000

Helly numbers for discrete sets

Let *S* be a discrete set in \mathbb{R}^d and n(S) be the largest number of vertices of an **empty** *S***-polytope**.

Definition

The **convex** polytope *P* is an empty *S*-polytope if

- ▶ all vertices of *P* are from *S*, and
- ▶ *P* does not contain other points from *S*.

Lemma (Hoffman, 1979)

h(S) = n(S) or $h(S) = \infty$ if n(S) does not exist.

Helly-type theorems	Delone sets	Crystals	CUT-AND-PROJECT SETS	OPEN QUESTIONS
000	0000	0000	0000	000000000

Helly numbers for Delone sets. Finite and infinite

Example

For \mathbb{Z}^d , the unit cube $[0, 1]^d$ has 2^d vertices and is an empty \mathbb{Z}^d -polytope.

Any set of at least $2^d + 1$ points from \mathbb{Z}^d contains two points from one parity class and does not give an empty \mathbb{Z}^d -polytope.

Example

For every $n \ge 3$ we can find a convex *n*-gon with vertices in the lattice \mathbb{Z}^2 . Using an appropriate $GL_2(\mathbb{Z})$ transformation we can transform this polygon into a "very thin" (and long) lattice polygon P_n .

Placing copies of P_n "very far apart" and removing lattice points inside each P_n we get a Delone set *S* with $h(S) = \infty$.

Discrete sets with finite Helly number

What are discrete or Delone sets with finite Helly number?

Theorem (De Loera, La Haye, Oliveros, Roldán-Pensado)

- If $S = \mathbb{Z}^2 \setminus L$ where L is a sublattice of \mathbb{Z}^2 , then $h(S) \leq 6$;
- If $S = \mathbb{Z}^d \setminus (L_1 \cup \ldots \cup L_k)$ where each L_i is a (shifted) sublattice of \mathbb{Z}^d , then $h(S) \leq C_k 2^d$.

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	OPEN QUESTIONS
000	00000	0000	0000	000000000

Crystals and cut-and-project sets

- ► repetitive clusters;
- periodic or quasi-periodic;
- "good" x-ray diffraction picture.

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	Open questions
000	00000	●000	0000	000000000

Crystals and crystallographic groups

Definition

Crystallographic group is a discrete subgroup of isometries with bounded fundamental domain.

Definition

Crystal is a union of finitely many orbits of a crystallographic group.

Theorem (Bieberbach, 1911-12)

Every crystallographic group in \mathbb{R}^d contains a subgroup of finite index isomorphic to \mathbb{Z}^d .

Definition

k-crystal in \mathbb{R}^d is a union of *k* translations of the same lattice.

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	Open questions
000	00000	0000	0000	000000000

Helly number for crystals

Theorem

If *S* is a *k*-crystal in \mathbb{R}^d , then $h(S) \leq k2^d$.

Proof.

Let *P* be an empty *S*-polytope with at least $k2^d + 1$ vertices. Then one copy of the corresponding lattice contains at least $2^d + 1$ vertices of *P* and therefore is not empty.

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	Open questions
000	00000	0000	0000	000000000

Two-dimensional crystals

Theorem

If S is a k-crystal in \mathbb{R}^2 *, then* $h(S) \le k + 6$ *; tight for* $k \ge 6$ *.*

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	Open questions
000	00000	0000	0000	000000000

Two-dimensional crystals

Theorem

If S is a k-crystal in \mathbb{R}^2 *, then* $h(S) \le k + 6$ *; tight for* $k \ge 6$ *.*

Proof.

Let *P* be an empty *S*-polygon with maximal number of vertices. If *N* is the maximal number of vertices of *P* from one copy of the lattice, then we can bound the number of lattice copies with more than one point in *P* depending on *N*.

General bounds of h(S) for *k*-crystals.

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	Open questions
000	00000	0000	0000	000000000

d-dimensional crystals

Theorem

For $d \ge 2$ and for $k \ge 6$ there exists a d-dimensional k-crystal S with $h(S) \ge (k+6)2^{d-2}$

If $h_{d,k}$ is the maximal Helly number among all *d*-dimensional *k*-crystals, then

$$(k+6)2^{d-2} \le h_{d,k} \le k2^d = 4k \cdot 2^{d-2}$$

provided $d \ge 2$ and $k \ge 6$.

Helly-type theorems	Delone sets	Crystals	CUT-AND-PROJECT SETS	Open questions
000	00000	0000	●000	000000000

Cut-and-project sets, pictorial definition

Helly-type theorems	Delone sets	Crystals	CUT-AND-PROJECT SETS	Open questions
000	00000	0000	0000	000000000

Cut-and-project sets, formal definition

Definition

- Λ is a (d + k)-dimensional lattice in $\mathbb{R}^d \times \mathbb{R}^k$;
- W is a compact set in ℝ^k such that closure of the interior of W is W, the window;
- π_1 and π_2 are projections on \mathbb{R}^d and \mathbb{R}^k . The projection $\pi_1|_{\Lambda}$ is injective and the projection $\pi_2(\Lambda)$ is dense.

Then $V = V(\mathbb{R}^d, \mathbb{R}^k, \Lambda, W) = \{\pi_1(\mathbf{x}) | \mathbf{x} \in \Lambda, \pi_2(\mathbf{x}) \in W\}$ is **cut-and-project set**.

$$\begin{array}{cccc} \mathbb{R}^d & \xleftarrow{\pi_1} \mathbb{R}^d \times \mathbb{R}^k \xrightarrow{\pi_2} & \mathbb{R}^k \\ \cup & \cup & \cup & \cup \\ V & \Lambda & W \end{array}$$

Helly-type theorems 000

Delone sets

Crystals

Cut-and-project sets 0000 Open questions 000000000

Cut-and-project sets: examples

Ammann-Beenker tiling can be constructed using a two-dimensional window and four-dimensional lattice

Helly-type theorems 000 Delone sets

Crystals 0000 Cut-and-project sets 0000 Open questions 000000000

Cut-and-project sets: examples

Penrose tiling can be constructed using a three-dimensional window and five-dimensional lattice

Helly-type theorems	Delone sets	Crystals	CUT-AND-PROJECT SETS	OPEN QUESTIONS
000	00000	0000	000●	000000000

Helly numbers for cut-and-project sets

Theorem

If $V = V(\mathbb{R}^d, \mathbb{R}^k, \Lambda, W)$ is a cut-and-project set with a **convex** window W, then $h(V) \leq 2^{d+k}$.

Proof.

- Suppose *P* is an empty *V*-polytope with at least 2^{d+k} + 1 vertices;
- π_1 -preimages of the vertices of *P* are points of the lattice Λ ;
- Due to Doignon's theorem, there is an additional lattice point x in the convex hull of preimages;
- Due to convexity of *W*, point $\pi_1(\mathbf{x})$ is in *V* and in *P*.

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	OPEN QUESTIONS
000	00000	0000	0000	•00000000

Further questions: Crystals

Question

What is the exact value for $h_{d,k}$?

$$(k+6)2^{d-2} \le h_{d,k} \le k2^d$$

Helly-type theorems

Delone sets 00000 Crystals 0000 Cut-and-project sets 0000 Open questions 00000000

FURTHER QUESTIONS: CUT-AND-PROJECT SETS The upper bound $h(V) \le 2^{d+k}$ for *d*-dimensional cut-and-project sets with *k*-dimensional window looks very non-optimal.

Helly-type theorems

Delone sets 00000 Crystals

Cut-and-project sets 0000 Open questions 00000000

FURTHER QUESTIONS: CUT-AND-PROJECT SETS The upper bound $h(V) \le 2^{d+k}$ for *d*-dimensional cut-and-project sets with *k*-dimensional window looks very non-optimal.

 Helly-type theorems
 Delone sets
 Crystals
 Cut-and-project sets
 Open questions

 000
 0000
 0000
 0000
 0000
 0

FURTHER QUESTIONS: CUT-AND-PROJECT SETS The upper bound $h(V) \le 2^{d+k}$ for *d*-dimensional cut-and-project sets with *k*-dimensional window looks very non-optimal.

Conjecture

h(vertices of a Penrose tiling) = 6

Conjecture (weaker version)

 $h(vertices of a Penrose tiling) \le 10$

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	OPEN QUESTIONS
000	00000	0000	0000	000000000

FURTHER QUESTIONS

Question

What about Helly numbers for discrete sets with weaker or different structure?

Cut-and-project sets with non-convex windows;

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	OPEN QUESTIONS
000	00000	0000	0000	000000000

Further questions

Question

What about Helly numbers for discrete sets with weaker or different structure?

- ► Cut-and-project sets with non-convex windows;
- ► FLC sets.

Definition

For $\mathbf{x} \in X$, the set of points of *X* at distance at most *r* from \mathbf{x} is called the *r*-cluster of \mathbf{x} .

Definition

X is called a set with finite local complexity if for every *r* it has only finitely many **non-equivalent** *r*-clusters. N(r), the number of equivalence classes of *r*-clusters, is called the **cluster counting function**. 20/26

Further questions: Meyer sets

Definition

A Delone set *X* is called a **Meyer set** if the set of differences X - X is a Delone set as well.

Theorem (Lagarias, 1999)

A Delone set is a Meyer set if and only if it is a subset of cut-and-project set.

Theorem

Every cut-and-project set contains a Delone set X *with* $h(X) = \infty$ *.*

Further questions: Repetitive sets

Definition

The Delone set *X* is called **repetitive** if there exists a function $f : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ such that every ball of radius f(r) + r contains every *r*-cluster of *X*.

Definition

The Delone set X is called **linearly repetitive** if f can be chosen to be linear, so there exists C such that every ball of radius Cr contains every r-cluster of X.

Theorem (Lagarias, Pleasants, 2003)

Linearly repetitive Delone sets have well-defined frequencies for every local cluster.

Further questions: Repetitive sets

Question

Does every repetitive Delone set have a finite Helly number?

Question

Does every linearly repetitive Delone set have a finite Helly number?

 Helly-type theorems
 Delone sets
 Crystals
 Cut-and-project sets
 Open questions

 000
 0000
 0000
 0000
 0000
 0000
 0000

Further questions: Repetitive sets

Question

Does every repetitive Delone set have a finite Helly number?

Question

What about **densely repetitive** Delone sets? For these sets $f(r) = O(N(r))^{1/d}$.

Question

Does every linearly repetitive Delone set have a finite Helly number?

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	Open questions
000	00000	0000	0000	0000000000

Further questions: Hyperbolic plane

Question

Does every crystallographic set in \mathbb{H}^2 have a finite Helly number?

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	OPEN QUESTIONS
000	00000	0000	0000	0000000000

Further questions: Hyperbolic plane

Question

Does every crystallographic set in \mathbb{H}^2 have a finite Helly number?

Question

Which **regular** *sets in* \mathbb{H}^2 *have finite Helly number?*

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	OPEN QUESTIONS
000	00000	0000	0000	000000000

Further questions: Hyperbolic plane

Question

Is there a Delone set in \mathbb{H}^2 *with finite Helly number?*

Helly-type theorems 000	Delone sets 00000	Crystals 0000	Cut-and-project sets 0000	Open questions 00000000

Thank you!