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Problem. Givene € (0,1) and d > 1 what is the smallest n such that there exist n
points in the unit d-dimensional cube [0, 1]¢ with the following property:

any axis-parallel box of volume ¢ contains at least one point?
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any axis-parallel box of volume ¢ contains at least one point?

Such an integer n is denoted below by
N(e,d).
Equivalently: Given integers n,d > 1 what is the largest € > 0 such that for any n

points in the unit d-dimensional cube [0, 1]¢ there exists an axis-parallel box of
volume € containing none of these points?
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Problem. Givene € (0,1) and d > 1 what is the smallest n such that there exist n
points in the unit d-dimensional cube [0, 1]¢ with the following property:

any axis-parallel box of volume ¢ contains at least one point?

Such an integer n is denoted below by

N(g,d).

Equivalently: Given integers n,d > 1 what is the largest € > 0 such that for any n
points in the unit d-dimensional cube [0, 1]¢ there exists an axis-parallel box of
volume € containing none of these points?

Such an ¢ is called dispersion (of the cube) or minimal dispersion and denoted by

disp*(n, d).
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Consider the set of all axis parallel boxes contained in the cube [0, 1]¢,

d
Ry = {HI,» | I = [ai, b;) C [0,1]}.
i=1
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Consider the set of all axis parallel boxes contained in the cube [0, 1]¢,

d
Ry = {HI,» | I = [ai, b;) C [0,1]}.
i=1

The dispersion of a finite set of points P C [0, 1]¢ is defined as

disp(P) = sup{|B| | B€ Ry, BNP = (}.
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Ry = {HI,» | I = [ai, b;) C [0,1]}.
i=1

The dispersion of a finite set of points P C [0, 1]¢ is defined as
disp(P) = sup{|B| | B€ R4, BNP = 0}.
Then the minimal dispersion is defined as the function of two variables, namely

disp*(n,d) = lli)r‘lf disp(P).
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Consider the set of all axis parallel boxes contained in the cube [0, 1]¢,

d
Ry = {HI,» | I = [ai, b;) C [0,1]}.
i=1

The dispersion of a finite set of points P C [0, 1]¢ is defined as
disp(P) = sup{|B| | B€ R4, BNP = 0}.
Then the minimal dispersion is defined as the function of two variables, namely

disp*(n,d) = lli)r‘lf disp(P).

In this talk it will be more convenient to work with its inverse, the function

N(e,d) = min{n € N| disp*(n,d) < €}.
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Known results.

27d+1
Rote-Tichy (96), Larcher (17): N(e,d) <

3
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Known results.

27d+1
Rote-Tichy (96), Larcher (17): N(e,d) < 5
Cd*logd
Bukh—Chao (20+): N(e,d) < %

For a lower bound one trivially has

1
disp*(n,d) > —— <= N(g,d)> - —1.
isp" (n.d) > —— (c.d) 2
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Known results.

27d+1
Rote-Tichy (96), Larcher (17): N(e,d) < 5
Cd*logd
Bukh—Chao (20+): N(e,d) < %

For a lower bound one trivially has

1
disp*(n,d) > —— <= N(g,d)> - —1.
isp" (n.d) > —— (c.d) 2

QI

4(n+5)

The first bound showing that the minimal dispersion grows with the dimension
was obtained by Aistleitner—Hinrichs—Rudolf (17):

5
Dumitrescu—Jiang (13): disp*(n,d) > < N(g,d)> 476_5,

N(e,d) > (1 —4¢)

log, d
de
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Known results.

4 log d
< N(e,d) < £108d
19 13

log, d
(1 — 4¢) 282

6]
Thus, when the dimension d is fixed and ¢ — 0 the problem is essentially solved:

Cy

N(E7d) ~ ?
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Known results.

4 log d
< N(e,d) < £108d
19 13

Thus, when the dimension d is fixed and ¢ — 0 the problem is essentially solved:

log, d
(1 — 4¢) 282

6]

Cy

N(E7d) ~ ?

However, there is a huge gap between the bounds when d — oc.

Blumer—Ehrenfeucht—Haussler—Warmuth (89) provided a general bound in terms of
VC dimension of R,. Using that this dimension equals to 2d,

Cd c
N(e,d) < ?10g2 (E) . )
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(1 — 4¢) 282
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Cy

N(E7d) ~ ?

However, there is a huge gap between the bounds when d — oc.

Blumer—Ehrenfeucht—Haussler—Warmuth (89) provided a general bound in terms of
VC dimension of R,. Using that this dimension equals to 2d,

Cd c
N(e,d) < ?Ing (E) . )

Rudolf (18): this can be proved using random points uniformly distributed in [0, 1]¢.
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Known results.

4 log d
< N(e,d) < £108d
19 13

Thus, when the dimension d is fixed and ¢ — 0 the problem is essentially solved:

log, d
(1 — 4¢) 282

6]

Cy

N(E7d) ~ ?

However, there is a huge gap between the bounds when d — oc.

Blumer—Ehrenfeucht—Haussler—Warmuth (89) provided a general bound in terms of
VC dimension of R,. Using that this dimension equals to 2d,

Cd c
N(e,d) < ?Ing (E) . )

Rudolf (18): this can be proved using random points uniformly distributed in [0, 1]¢.

Estimate (2) is better than the upper bound in (1) in the regime & > d~“.
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Known results.

A natural conjecture: N(c,d) ~ ¢. (Bukh-Chao: N(g,d) > £ if e < (4d)~%)
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Known results.

A natural conjecture: N(c,d) ~ ¢. (Bukh-Chao: N(g,d) > £ if e < (4d)~%)

Sosnovec (18): N(e,d) < C.log,d for < 1/4.
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Known results.

A natural conjecture: N(c,d) ~ ¢. (Bukh-Chao: N(g,d) > £ if e < (4d)~%)

Sosnovec (18): N(e,d) < C.log,d for < 1/4.

Thus, when ¢ € (0,1/4) is fixed and d — oo, we have

N(e,d) = C:log, d.
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Known results.

A natural conjecture: N(c,d) ~ ¢. (Bukh-Chao: N(g,d) > £ if e < (4d)~%)

— eg

Sosnovec (18): N(e,d) < C.log,d for < 1/4.

Thus, when ¢ € (0,1/4) is fixed and d — oo, we have
N(e,d) = C:log, d.
Dependence on €.

Sosnovec (18): C. = (1/5)(C/5)2.
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Known results.

A natural conjecture: N(c,d) ~ ¢. (Bukh-Chao: N(g,d) > £ if e < (4d)~%)

— eg

Sosnovec (18): N(e,d) < C.log,d for < 1/4.
Thus, when ¢ € (0,1/4) is fixed and d — oo, we have
N(e,d) = C:log, d.

Dependence on €.

Sosnovec (18): C. = (1/5)(C/5)2.
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Ullrich and Vybiral (18): C. = = (log2 <5)> ]
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Known results.

A natural conjecture: N(c,d) ~ ¢. (Bukh-Chao: N(g,d) > £ if e < (4d)~%)

Sosnovec (18): N(e,d) < C.log,d for < 1/4.

Thus, when e € (0,1/4) is fixed and d — oo, we have
N(e,d) = C. log, d.

Dependence on ¢.

Sosnovec (18):  C. ~ (1/£)(C/e)".

2 1Y)’
Ullrich and Vybiral (18): C. = = (log2 <5)> ]

They also conjectured that  N(e,d) ~ 8¢

€

Their upper bound is better in the regime

C (log, d)2

>
£E Ty
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Known results.

The Sosnovec—Ullrich—Vybiral proof is also based on a random choice of points, but
instead of the uniform distribution on [0, 1]¢ they use uniform distribution on a certain
lattice, gaining in the case of relatively large €.
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Known results.

The Sosnovec—Ullrich—Vybiral proof is also based on a random choice of points, but
instead of the uniform distribution on [0, 1]¢ they use uniform distribution on a certain
lattice, gaining in the case of relatively large €.

Remarks on very large <.
If € €[1/2,1] then N(e,d) =1, indeed one can take the point (1/2,1/2,...,1/2).
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lattice, gaining in the case of relatively large €.

Remarks on very large <.
If € €[1/2,1] then N(e,d) =1, indeed one can take the point (1/2,1/2,...,1/2).

Sosnovec (18): N(e,d) < 1+{ J for e¢>1/4.

e—1/4

Does not grow when d — oo. Recall, for ¢ < 1/4, we have N(e,d) > C.log, d.
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The Sosnovec—Ullrich—Vybiral proof is also based on a random choice of points, but
instead of the uniform distribution on [0, 1]¢ they use uniform distribution on a certain
lattice, gaining in the case of relatively large €.

Remarks on very large <.
If € €[1/2,1] then N(e,d) =1, indeed one can take the point (1/2,1/2,...,1/2).

Sosnovec (18): N(e,d) < 1+{ J for e¢>1/4.

e—1/4

Does not grow when d — oo. Recall, for ¢ < 1/4, we have N(e,d) > C.log, d.

C
Kurt MacKay (20+): N(e,d) < 7]/4 for ¢>1/4.
e —
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Known results.

The Sosnovec—Ullrich—Vybiral proof is also based on a random choice of points, but
instead of the uniform distribution on [0, 1]¢ they use uniform distribution on a certain
lattice, gaining in the case of relatively large €.

Remarks on very large <.
If € €[1/2,1] then N(e,d) =1, indeed one can take the point (1/2,1/2,...,1/2).

Sosnovec (18): N(e,d) < 1+{ J for e¢>1/4.

e—1/4

Does not grow when d — oo. Recall, for ¢ < 1/4, we have N(e,d) > C.log, d.

C
Kurt MacKay (20+): N(e,d) < 7]/4 for ¢>1/4.
e —

Problem. Whatis N(1/4,d)? How does N(e,d) behave when ¢ — (1/4)%.
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Upper bounds: summary

Till very recently:

d
d 1 In*d
N(e,d) < cd In (> , T > e > exp(—C9),

€ € d
Cd
- if &< exp(—CY)
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Upper bounds: summary

Till very recently:

Clnd _, (1 In*d
52 1 (5) 5 if g 2 7d N
d 1 In®d
N(e,d) < cd In (> , T > e > exp(—C9),
€ € d
Cd
— if &< exp(—CY)

Using the Bukh—Chao result:

Clnd _ , (1 , In’d
= In (5)’ if e> 7
1 In’
N(e,d) < Cd In () , if In"d > e > exp(—Cdlnd),
€ € d
Cd’Ind
. = , if e <exp(—Cdlnd).
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New bounds.

Theorem (small ¢)

Let d>2 and € < 1/2. Then

Clnd 1
(@) N(e,d) < : In (g) , provided that ¢ < exp(—d),

2
(ii) N(e,d) < %l Inln (;) : provided that ¢ > exp(—d).

Moreover; the random choice of points uniformly distributed on [0, 1]¢ works.
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New bounds.

Theorem (small ¢)
Let d>2 and € < 1/2. Then

Clnd 1
(@) N(e,d) < : In (g) , provided that ¢ < exp(—d),

2
(ii) N(e,d) < %1 Inln (;) : provided that ¢ > exp(—d).

Moreover; the random choice of points uniformly distributed on [0, 1]¢ works.

Thus, for ¢ < exp(—d) we have

1 1 1
BeNeay< E2 ()
6¢e € €

In (if) the improvement is only in substitution of In(1/e) with Inln(1/e).
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Hinrichs—Krieg—Kunsch—Rudolf (20): for a random choice of points

c 1 d
71 - " <Nran 7d
max{gn(g),zg} (e,d)
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Hinrichs—Krieg—Kunsch—Rudolf (20): for a random choice of points

max{cln (1> , d} < Nun(e,d) < max{c Ind In (1> , cd InIn <2>}
€ € 2¢e € € € €

Theorem (relatively large <)

Let d>?2 and % <e<1/2. Then

CInd 1
N(S,d) < 22 In (E) o
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Hinrichs—Krieg—Kunsch—Rudolf (20): for a random choice of points

max{cln (1> , d} < Nun(e,d) < max{c Ind In (1> , cd InIn <2>}
€ € 2¢e € € € €

Theorem (relatively large <)

Let d>?2 and % <e<1/2. Then

CInd 1
N(S,d) < 22 In (E) o

In%d

The bound here is better when & > m
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Hinrichs—Krieg—Kunsch—Rudolf (20): for a random choice of points

max{cln (1> , d} < Nun(e,d) < max{c Ind In (1> , cd InIn <2>}
€ € 2¢e € € € €

Theorem (relatively large <)
Let d>?2 and % <e<1/2. Then

1 1
N(e,d) < ¢ fd In (-)

8 €

In*d
>
~ dInln(2d)

The prove also uses random points, but one needs to adjust the distribution.

The bound here is better when ¢
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State of the art.

Clnd 1 . In?d
2In(), ife> AIn(2a)”
N(E d) < Cd Inln (é) if dhirllnéd) zez eid’
’ Clng In(1), ife?>e>exp(—Cdlnd),
@, if € <exp(—CdlInd).
1 Cd
Z1=— = d
- z=d z=¢e

_dInind
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Some ideas of the proof.

Consider a set P of random points independently and uniformly distributed in the
cube. To show that (with good probability) every box of volume ¢ contains at least
one point from P, we need to construct a set ' of “test boxes.” It should satisfy

each rectangle in N contains a point from P ==

each rectangle in R, of volume at least € contains a point from P.
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Consider a set P of random points independently and uniformly distributed in the
cube. To show that (with good probability) every box of volume ¢ contains at least
one point from P, we need to construct a set ' of “test boxes.” It should satisfy

each rectangle in N contains a point from P ==

each rectangle in R, of volume at least € contains a point from P.

Standardly, using union bound, one estimates the probability of the “bad” event
there exists a rectangle in N containing no points from P

as the sum of “bad” probabilities of individual events,

a given rectangle in N containing no points from P.
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one point from P, we need to construct a set ' of “test boxes.” It should satisfy

each rectangle in N contains a point from P ==

each rectangle in R, of volume at least € contains a point from P.

Standardly, using union bound, one estimates the probability of the “bad” event
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Individual bounds are simple — volume computations.
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cube. To show that (with good probability) every box of volume ¢ contains at least
one point from P, we need to construct a set ' of “test boxes.” It should satisfy

each rectangle in N contains a point from P ==

each rectangle in R, of volume at least € contains a point from P.

Standardly, using union bound, one estimates the probability of the “bad” event
there exists a rectangle in N containing no points from P
as the sum of “bad” probabilities of individual events,
a given rectangle in N containing no points from P.

Individual bounds are simple — volume computations.
Thus the main difficulty is to construct the set /' of not too large cardinality.
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Some ideas of the proof.

Consider a set P of random points independently and uniformly distributed in the
cube. To show that (with good probability) every box of volume ¢ contains at least
one point from P, we need to construct a set ' of “test boxes.” It should satisfy

each rectangle in N contains a point from P ==

each rectangle in R, of volume at least € contains a point from P.

Standardly, using union bound, one estimates the probability of the “bad” event
there exists a rectangle in N containing no points from P
as the sum of “bad” probabilities of individual events,
a given rectangle in N containing no points from P.

Individual bounds are simple — volume computations.
Thus the main difficulty is to construct the set /' of not too large cardinality.

Rudolf used the concept of §-cover to construct N (and bounds due to Gnewuch).
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Some ideas of the proof.

Consider a set P of random points independently and uniformly distributed in the
cube. To show that (with good probability) every box of volume ¢ contains at least
one point from P, we need to construct a set ' of “test boxes.” It should satisfy

each rectangle in N contains a point from P ==

each rectangle in R, of volume at least € contains a point from P.

Standardly, using union bound, one estimates the probability of the “bad” event
there exists a rectangle in N containing no points from P
as the sum of “bad” probabilities of individual events,
a given rectangle in N containing no points from P.

Individual bounds are simple — volume computations.
Thus the main difficulty is to construct the set /' of not too large cardinality.
Rudolf used the concept of §-cover to construct N (and bounds due to Gnewuch).

We use a different approach, which fits better this problem,
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Some ideas of the proof.

Denote
Beg = {B €Rq | |Bl > 5}.

Definition. We say that N C Ry is a 6-net for B. 4 if

VBeB.y, 3Bpe N: ByCB and |By| > (1—0)|B|
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Some ideas of the proof.

Denote
Bey:= {B Ry | B > 5}.

Definition. We say that N C Ry is a 6-net for B. 4 if

VBeB.y, 3Bpe N: ByCB and |By| > (1—0)|B|

A variant of the following lemma using random points and the union bound was
proved by Rudolf.

Lemma (size of a net)

Letd > lande,é € (0,1). Let N be a d-net for B, 4 with [IN'| > 3. Then with
probability at least 1 — 1/|N|

a random choice of N points satisfies the desire property.
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Proof of the lemma.

Consider N independent random points X, ..., Xy uniformly drawn from [0, l}d .
It is enough to show that

VBeN with [B|>v=(1-6)¢ J<N: X €B.
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Proof of the lemma.

Consider N independent random points X, ..., Xy uniformly drawn from [0, l}d .
It is enough to show that

VBeN with [B|>v=(1-6)¢ J<N: X €B.

Fix such a box B. Using independence of X;’s,

P({<N: X ¢B}) = (1-v)" < exp(—wN).
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Proof of the lemma.

Consider N independent random points X, ..., Xy uniformly drawn from [0, 1}" .
It is enough to show that

VBe N with |B|>v=(1-d)e Ji<N: X;€B.
Fix such a box B. Using independence of X;’s,
PV <N: X ¢ BY) = (1—v)" < exp(—wV).
Therefore, by the union bound,

P{3BeN: [Bj>v and Vj<N: X;¢B})<|N|exp(—vN).
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Proof of the lemma.

Consider N independent random points X, ..., Xy uniformly drawn from [0, 1}" .
It is enough to show that

VBe N with |B|>v=(1-d)e Ji<N: X;€B.
Fix such a box B. Using independence of X;’s,
P({¥<N: X;¢B})=(1—v)" <exp(—wN).
Therefore, by the union bound,
P{3BeN: [Bj>v and Vj<N: X;¢B})<|N|exp(—vN).

Thus, as far as
WV]exp(—vN) <1

there exists a realization of X;’s with the desired property.
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Construction of a net.
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Dispersion on the torus.

We consider periodic axis parallel boxes, that is, boxes of the form

d
Hli(aiabi)v aivbi € [07 1]7
i=1
where
Ii(a,b) = (ai, b;), whenever 0 < a@; < b; <1,
[0,1]\ [bi,a;], whenever 0 < b; < a; < 1.
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Dispersion on the torus.

We consider periodic axis parallel boxes, that is, boxes of the form

d
Hli(a,-,b,-), aivbi € [07 1]7

i=1
where
Ii(a,b) = (ai, b;), whenever 0 < a@; < b; <1,
[0,1]\ [bi,a;], whenever 0 < b; < a; < 1.

Combining recent results of M. Ullrich (18) and Rudolf (18)

d -~ 8d 8
4 Feay < (lnd+ln <>> |
€ € €
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Dispersion on the torus.

We consider periodic axis parallel boxes, that is, boxes of the form

d
Hli(a,-,b,-)7 aivbi € [07 1]7

i=1

where

[0,1]\ [bi,a;], whenever 0 < b; < a; < 1.
Combining recent results of M. Ullrich (18) and Rudolf (18)

d -~ 8d 8
4 Feay < <lnd+ln <>> |
€ € €

Note that the VC dimension of the set of periodic axis parallel boxes is of the order
d In d, therefore the Blumer—Ehrenfeucht—Haussler—Warmuth result leads to

~ 1
N(e,d) < 8d1Ind In (8>
5 €

(a,b) == {(ai7bi), whenever 0 < a; < b; <1,

— worse than the Rudolf bound.
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Dispersion on the torus.

d < N(e,d) < 8d (lnd+ln <8>>
3 3 3

We improve the Rudolf upper bound in the case ¢ < 1/d°.

Theorem (bounds in the periodic case)

Let d>2 and € € (0,1/2]. Then

(i) N(e,d) < Clnd ln(1

E) ) provided that ¢ < exp(—d),

_ CdInd
(id) N(e,d) < 5n , provided that & 2 exp(~d).

Moreover; the random choice of points uniformly distributed on [0, 1]¢ works.
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