A remark on the minimal dispersion

Alexander Litvak

University of Alberta

Problem.

Problem. Given $\varepsilon \in(0,1)$ and $d \geq 1$ what is the smallest n such that there exist n points in the unit d-dimensional cube $[0,1]^{d}$ with the following property:
any axis-parallel box of volume ε contains at least one point?

Problem.

Problem. Given $\varepsilon \in(0,1)$ and $d \geq 1$ what is the smallest n such that there exist n points in the unit d-dimensional cube $[0,1]^{d}$ with the following property:
any axis-parallel box of volume ε contains at least one point?
Such an integer n is denoted below by

$$
N(\varepsilon, d)
$$

Problem.

Problem. Given $\varepsilon \in(0,1)$ and $d \geq 1$ what is the smallest n such that there exist n points in the unit d-dimensional cube $[0,1]^{d}$ with the following property:
any axis-parallel box of volume ε contains at least one point?
Such an integer n is denoted below by

$$
N(\varepsilon, d)
$$

Equivalently: Given integers $n, d \geq 1$ what is the largest $\varepsilon>0$ such that for any n points in the unit d-dimensional cube $[0,1]^{d}$ there exists an axis-parallel box of volume ε containing none of these points?

Problem.

Problem. Given $\varepsilon \in(0,1)$ and $d \geq 1$ what is the smallest n such that there exist n points in the unit d-dimensional cube $[0,1]^{d}$ with the following property:
any axis-parallel box of volume ε contains at least one point?
Such an integer n is denoted below by

$$
N(\varepsilon, d)
$$

Equivalently: Given integers $n, d \geq 1$ what is the largest $\varepsilon>0$ such that for any n points in the unit d-dimensional cube $[0,1]^{d}$ there exists an axis-parallel box of volume ε containing none of these points?

Such an ε is called dispersion (of the cube) or minimal dispersion and denoted by

$$
\operatorname{disp}^{*}(n, d) .
$$

Notations.

Consider the set of all axis parallel boxes contained in the cube $[0,1]^{d}$,

$$
\mathcal{R}_{d}:=\left\{\prod_{i=1}^{d} I_{i} \mid I_{i}=\left[a_{i}, b_{i}\right) \subset[0,1]\right\} .
$$

Notations.

Consider the set of all axis parallel boxes contained in the cube $[0,1]^{d}$,

$$
\mathcal{R}_{d}:=\left\{\prod_{i=1}^{d} I_{i} \mid I_{i}=\left[a_{i}, b_{i}\right) \subset[0,1]\right\} .
$$

The dispersion of a finite set of points $P \subset[0,1]^{d}$ is defined as

$$
\operatorname{disp}(P)=\sup \left\{|B| \mid B \in \mathcal{R}_{d}, B \cap P=\emptyset\right\} .
$$

Notations.

Consider the set of all axis parallel boxes contained in the cube $[0,1]^{d}$,

$$
\mathcal{R}_{d}:=\left\{\prod_{i=1}^{d} I_{i} \mid I_{i}=\left[a_{i}, b_{i}\right) \subset[0,1]\right\} .
$$

The dispersion of a finite set of points $P \subset[0,1]^{d}$ is defined as

$$
\operatorname{disp}(P)=\sup \left\{|B| \mid B \in \mathcal{R}_{d}, B \cap P=\emptyset\right\} .
$$

Then the minimal dispersion is defined as the function of two variables, namely

$$
\operatorname{disp}^{*}(n, d)=\inf _{|P|=n} \operatorname{disp}(P)
$$

Notations.

Consider the set of all axis parallel boxes contained in the cube $[0,1]^{d}$,

$$
\mathcal{R}_{d}:=\left\{\prod_{i=1}^{d} I_{i} \mid I_{i}=\left[a_{i}, b_{i}\right) \subset[0,1]\right\} .
$$

The dispersion of a finite set of points $P \subset[0,1]^{d}$ is defined as

$$
\operatorname{disp}(P)=\sup \left\{|B| \mid B \in \mathcal{R}_{d}, B \cap P=\emptyset\right\} .
$$

Then the minimal dispersion is defined as the function of two variables, namely

$$
\operatorname{disp}^{*}(n, d)=\inf _{|P|=n} \operatorname{disp}(P)
$$

In this talk it will be more convenient to work with its inverse, the function

$$
N(\varepsilon, d)=\min \left\{n \in \mathbb{N} \mid \operatorname{disp}^{*}(n, d) \leq \varepsilon\right\} .
$$

Known results.

Rote-Tichy (96), Larcher (17): $\quad N(\varepsilon, d) \leq \frac{2^{7 d+1}}{\varepsilon}$

Known results.

Rote-Tichy (96), Larcher (17): $\quad N(\varepsilon, d) \leq \frac{2^{7 d+1}}{\varepsilon}$

Bukh-Chao (20+):

$$
N(\varepsilon, d) \leq \frac{C d^{2} \log d}{\varepsilon}
$$

Known results.

Rote-Tichy (96), Larcher (17): $\quad N(\varepsilon, d) \leq \frac{2^{7 d+1}}{\varepsilon}$

Bukh-Chao (20+):

$$
N(\varepsilon, d) \leq \frac{C d^{2} \log d}{\varepsilon}
$$

For a lower bound one trivially has

$$
\operatorname{disp}^{*}(n, d) \geq \frac{1}{n+1} \quad \Longleftrightarrow \quad N(\varepsilon, d) \geq \frac{1}{\varepsilon}-1
$$

Known results.

Rote-Tichy (96), Larcher (17): $\quad N(\varepsilon, d) \leq \frac{2^{7 d+1}}{\varepsilon}$
Bukh-Chao (20+): $\quad N(\varepsilon, d) \leq \frac{C d^{2} \log d}{\varepsilon}$
For a lower bound one trivially has

$$
\operatorname{disp}^{*}(n, d) \geq \frac{1}{n+1} \quad \Longleftrightarrow \quad N(\varepsilon, d) \geq \frac{1}{\varepsilon}-1
$$

Dumitrescu-Jiang (13): $\quad \operatorname{disp}^{*}(n, d) \geq \frac{5}{4(n+5)} \quad \Longleftrightarrow \quad N(\varepsilon, d) \geq \frac{5}{4 \varepsilon}-5$.

Known results.

Rote-Tichy (96), Larcher (17): $\quad N(\varepsilon, d) \leq \frac{2^{7 d+1}}{\varepsilon}$

Bukh-Chao (20+): $\quad N(\varepsilon, d) \leq \frac{C d^{2} \log d}{\varepsilon}$
For a lower bound one trivially has

$$
\operatorname{disp}^{*}(n, d) \geq \frac{1}{n+1} \quad \Longleftrightarrow \quad N(\varepsilon, d) \geq \frac{1}{\varepsilon}-1
$$

Dumitrescu-Jiang (13): $\quad \operatorname{disp}^{*}(n, d) \geq \frac{5}{4(n+5)} \quad \Longleftrightarrow \quad N(\varepsilon, d) \geq \frac{5}{4 \varepsilon}-5$.
The first bound showing that the minimal dispersion grows with the dimension was obtained by Aistleitner-Hinrichs-Rudolf (17):

$$
N(\varepsilon, d) \geq(1-4 \varepsilon) \frac{\log _{2} d}{4 \varepsilon} .
$$

Known results.

$$
\begin{equation*}
(1-4 \varepsilon) \frac{\log _{2} d}{4 \varepsilon} \leq N(\varepsilon, d) \leq \frac{C d^{2} \log d}{\varepsilon} \tag{1}
\end{equation*}
$$

Thus, when the dimension d is fixed and $\varepsilon \rightarrow 0$ the problem is essentially solved:

$$
N(\varepsilon, d) \approx \frac{C_{d}}{\varepsilon}
$$

Known results.

$$
\begin{equation*}
(1-4 \varepsilon) \frac{\log _{2} d}{4 \varepsilon} \leq N(\varepsilon, d) \leq \frac{C d^{2} \log d}{\varepsilon} \tag{1}
\end{equation*}
$$

Thus, when the dimension d is fixed and $\varepsilon \rightarrow 0$ the problem is essentially solved:

$$
N(\varepsilon, d) \approx \frac{C_{d}}{\varepsilon} .
$$

However, there is a huge gap between the bounds when $d \rightarrow \infty$.

Known results.

$$
\begin{equation*}
(1-4 \varepsilon) \frac{\log _{2} d}{4 \varepsilon} \leq N(\varepsilon, d) \leq \frac{C d^{2} \log d}{\varepsilon} \tag{1}
\end{equation*}
$$

Thus, when the dimension d is fixed and $\varepsilon \rightarrow 0$ the problem is essentially solved:

$$
N(\varepsilon, d) \approx \frac{C_{d}}{\varepsilon}
$$

However, there is a huge gap between the bounds when $d \rightarrow \infty$.
Blumer-Ehrenfeucht-Haussler-Warmuth (89) provided a general bound in terms of VC dimension of \mathcal{R}_{d}. Using that this dimension equals to $2 d$,

$$
\begin{equation*}
N(\varepsilon, d) \leq \frac{C d}{\varepsilon} \log _{2}\left(\frac{C}{\varepsilon}\right) \tag{2}
\end{equation*}
$$

Known results.

$$
\begin{equation*}
(1-4 \varepsilon) \frac{\log _{2} d}{4 \varepsilon} \leq N(\varepsilon, d) \leq \frac{C d^{2} \log d}{\varepsilon} \tag{1}
\end{equation*}
$$

Thus, when the dimension d is fixed and $\varepsilon \rightarrow 0$ the problem is essentially solved:

$$
N(\varepsilon, d) \approx \frac{C_{d}}{\varepsilon}
$$

However, there is a huge gap between the bounds when $d \rightarrow \infty$.
Blumer-Ehrenfeucht-Haussler-Warmuth (89) provided a general bound in terms of VC dimension of \mathcal{R}_{d}. Using that this dimension equals to $2 d$,

$$
\begin{equation*}
N(\varepsilon, d) \leq \frac{C d}{\varepsilon} \log _{2}\left(\frac{C}{\varepsilon}\right) \tag{2}
\end{equation*}
$$

Rudolf (18): this can be proved using random points uniformly distributed in $[0,1]^{d}$.

Known results.

$$
\begin{equation*}
(1-4 \varepsilon) \frac{\log _{2} d}{4 \varepsilon} \leq N(\varepsilon, d) \leq \frac{C d^{2} \log d}{\varepsilon} \tag{1}
\end{equation*}
$$

Thus, when the dimension d is fixed and $\varepsilon \rightarrow 0$ the problem is essentially solved:

$$
N(\varepsilon, d) \approx \frac{C_{d}}{\varepsilon}
$$

However, there is a huge gap between the bounds when $d \rightarrow \infty$.
Blumer-Ehrenfeucht-Haussler-Warmuth (89) provided a general bound in terms of VC dimension of \mathcal{R}_{d}. Using that this dimension equals to $2 d$,

$$
\begin{equation*}
N(\varepsilon, d) \leq \frac{C d}{\varepsilon} \log _{2}\left(\frac{C}{\varepsilon}\right) \tag{2}
\end{equation*}
$$

Rudolf (18): this can be proved using random points uniformly distributed in $[0,1]^{d}$.
Estimate (2) is better than the upper bound in (1) in the regime $\varepsilon \geq d^{-C d}$.

Known results.

A natural conjecture: $\quad N(\varepsilon, d) \approx \frac{d}{\varepsilon}$. (Bukh-Chao: $N(\varepsilon, d) \geq \frac{d}{e \varepsilon}$ if $\varepsilon \leq(4 d)^{-d}$.)

Known results.

A natural conjecture: $\quad N(\varepsilon, d) \approx \frac{d}{\varepsilon}$. (Bukh-Chao: $N(\varepsilon, d) \geq \frac{d}{e \varepsilon}$ if $\varepsilon \leq(4 d)^{-d}$.)

Sosnovec (18): $\quad N(\varepsilon, d) \leq C_{\varepsilon} \log _{2} d \quad$ for $\quad \varepsilon<1 / 4$.

Known results.

A natural conjecture: $\quad N(\varepsilon, d) \approx \frac{d}{\varepsilon}$. (Bukh-Chao: $N(\varepsilon, d) \geq \frac{d}{e \varepsilon}$ if $\varepsilon \leq(4 d)^{-d}$.)
Sosnovec (18): $\quad N(\varepsilon, d) \leq C_{\varepsilon} \log _{2} d \quad$ for $\quad \varepsilon<1 / 4$.
Thus, when $\varepsilon \in(0,1 / 4)$ is fixed and $d \rightarrow \infty$, we have

$$
N(\varepsilon, d) \approx C_{\varepsilon} \log _{2} d
$$

Known results.

A natural conjecture: $N(\varepsilon, d) \approx \frac{d}{\varepsilon}$. (Bukh-Chao: $N(\varepsilon, d) \geq \frac{d}{e \varepsilon}$ if $\varepsilon \leq(4 d)^{-d}$.)

Sosnovec (18): $\quad N(\varepsilon, d) \leq C_{\varepsilon} \log _{2} d \quad$ for $\quad \varepsilon<1 / 4$.
Thus, when $\varepsilon \in(0,1 / 4)$ is fixed and $d \rightarrow \infty$, we have

$$
N(\varepsilon, d) \approx C_{\varepsilon} \log _{2} d
$$

Dependence on ε.

Sosnovec (18): $\quad C_{\varepsilon} \approx(1 / \varepsilon)^{(C / \varepsilon)^{2}}$.

Known results.

A natural conjecture: $\quad N(\varepsilon, d) \approx \frac{d}{\varepsilon}$. (Bukh-Chao: $N(\varepsilon, d) \geq \frac{d}{e \varepsilon}$ if $\varepsilon \leq(4 d)^{-d}$.)
Sosnovec (18): $\quad N(\varepsilon, d) \leq C_{\varepsilon} \log _{2} d \quad$ for $\quad \varepsilon<1 / 4$.
Thus, when $\varepsilon \in(0,1 / 4)$ is fixed and $d \rightarrow \infty$, we have

$$
N(\varepsilon, d) \approx C_{\varepsilon} \log _{2} d
$$

Dependence on ε.
Sosnovec (18): $\quad C_{\varepsilon} \approx(1 / \varepsilon)^{(C / \varepsilon)^{2}}$.

Ullrich and Vybíral (18):

$$
C_{\varepsilon}=\frac{2^{7}}{\varepsilon^{2}}\left(\log _{2}\left(\frac{1}{\varepsilon}\right)\right)^{2} .
$$

They also conjectured that $\quad N(\varepsilon, d) \approx \frac{\log d}{\varepsilon}$.

Known results.

A natural conjecture: $\quad N(\varepsilon, d) \approx \frac{d}{\varepsilon}$. (Bukh-Chao: $N(\varepsilon, d) \geq \frac{d}{e \varepsilon}$ if $\varepsilon \leq(4 d)^{-d}$.)
Sosnovec (18): $\quad N(\varepsilon, d) \leq C_{\varepsilon} \log _{2} d \quad$ for $\quad \varepsilon<1 / 4$.
Thus, when $\varepsilon \in(0,1 / 4)$ is fixed and $d \rightarrow \infty$, we have

$$
N(\varepsilon, d) \approx C_{\varepsilon} \log _{2} d
$$

Dependence on ε.
Sosnovec (18): $\quad C_{\varepsilon} \approx(1 / \varepsilon)^{(C / \varepsilon)^{2}}$.

Ullrich and Vybíral (18):

$$
C_{\varepsilon}=\frac{2^{7}}{\varepsilon^{2}}\left(\log _{2}\left(\frac{1}{\varepsilon}\right)\right)^{2} .
$$

They also conjectured that $\quad N(\varepsilon, d) \approx \frac{\log d}{\varepsilon}$.
Their upper bound is better in the regime

$$
\varepsilon \geq \frac{C\left(\log _{2} d\right)^{2}}{d}
$$

Known results.

The Sosnovec-Ullrich-Vybíral proof is also based on a random choice of points, but instead of the uniform distribution on $[0,1]^{d}$ they use uniform distribution on a certain lattice, gaining in the case of relatively large ε.

Known results.

The Sosnovec-Ullrich-Vybíral proof is also based on a random choice of points, but instead of the uniform distribution on $[0,1]^{d}$ they use uniform distribution on a certain lattice, gaining in the case of relatively large ε.
Remarks on very large ε.
If $\varepsilon \in[1 / 2,1]$ then $N(\varepsilon, d)=1$, indeed one can take the point $(1 / 2,1 / 2, \ldots, 1 / 2)$.

Known results.

The Sosnovec-Ullrich-Vybíral proof is also based on a random choice of points, but instead of the uniform distribution on $[0,1]^{d}$ they use uniform distribution on a certain lattice, gaining in the case of relatively large ε.
Remarks on very large ε.
If $\varepsilon \in[1 / 2,1]$ then $N(\varepsilon, d)=1$, indeed one can take the point $(1 / 2,1 / 2, \ldots, 1 / 2)$.

Sosnovec (18):

$$
N(\varepsilon, d) \leq 1+\left\lfloor\frac{1}{\varepsilon-1 / 4}\right\rfloor \quad \text { for } \quad \varepsilon>1 / 4
$$

Does not grow when $d \rightarrow \infty$. Recall, for $\varepsilon<1 / 4$, we have $N(\varepsilon, d) \geq C_{\varepsilon} \log _{2} d$.

Known results.

The Sosnovec-Ullrich-Vybíral proof is also based on a random choice of points, but instead of the uniform distribution on $[0,1]^{d}$ they use uniform distribution on a certain lattice, gaining in the case of relatively large ε.
Remarks on very large ε.
If $\varepsilon \in[1 / 2,1]$ then $N(\varepsilon, d)=1$, indeed one can take the point $(1 / 2,1 / 2, \ldots, 1 / 2)$.

Sosnovec (18):

$$
N(\varepsilon, d) \leq 1+\left\lfloor\frac{1}{\varepsilon-1 / 4}\right\rfloor \quad \text { for } \quad \varepsilon>1 / 4
$$

Does not grow when $d \rightarrow \infty$. Recall, for $\varepsilon<1 / 4$, we have $N(\varepsilon, d) \geq C_{\varepsilon} \log _{2} d$.

Kurt MacKay (20+):

$$
N(\varepsilon, d) \leq \frac{C}{\sqrt{\varepsilon-1 / 4}} \quad \text { for } \quad \varepsilon>1 / 4
$$

Known results.

The Sosnovec-Ullrich-Vybíral proof is also based on a random choice of points, but instead of the uniform distribution on $[0,1]^{d}$ they use uniform distribution on a certain lattice, gaining in the case of relatively large ε.
Remarks on very large ε.
If $\varepsilon \in[1 / 2,1]$ then $N(\varepsilon, d)=1$, indeed one can take the point $(1 / 2,1 / 2, \ldots, 1 / 2)$.

Sosnovec (18):

$$
N(\varepsilon, d) \leq 1+\left\lfloor\frac{1}{\varepsilon-1 / 4}\right\rfloor \quad \text { for } \quad \varepsilon>1 / 4
$$

Does not grow when $d \rightarrow \infty$. Recall, for $\varepsilon<1 / 4$, we have $N(\varepsilon, d) \geq C_{\varepsilon} \log _{2} d$.

Kurt MacKay (20+):

$$
N(\varepsilon, d) \leq \frac{C}{\sqrt{\varepsilon-1 / 4}} \quad \text { for } \quad \varepsilon>1 / 4
$$

Problem. What is $N(1 / 4, d)$? How does $N(\varepsilon, d)$ behave when $\varepsilon \rightarrow(1 / 4)^{ \pm}$.

Upper bounds: summary

Till very recently:

$$
N(\varepsilon, d) \leq\left\{\begin{array}{lll}
\frac{C \ln d}{\varepsilon^{2}} \ln ^{2}\left(\frac{1}{\varepsilon}\right), & \text { if } & \varepsilon \geq \frac{\ln ^{2} d}{d}, \\
\frac{C d}{\varepsilon} \ln \left(\frac{1}{\varepsilon}\right), & \text { if } & \frac{\ln ^{2} d}{d} \geq \varepsilon \geq \exp \left(-C^{d}\right), \\
\frac{C^{d}}{\varepsilon}, & \text { if } & \varepsilon \leq \exp \left(-C^{d}\right) .
\end{array}\right.
$$

Upper bounds: summary

Till very recently:

$$
N(\varepsilon, d) \leq \begin{cases}\frac{C \ln d}{\varepsilon^{2}} \ln ^{2}\left(\frac{1}{\varepsilon}\right), & \text { if } \quad \varepsilon \geq \frac{\ln ^{2} d}{d}, \\ \frac{C d}{\varepsilon} \ln \left(\frac{1}{\varepsilon}\right), & \text { if } \quad \frac{\ln ^{2} d}{d} \geq \varepsilon \geq \exp \left(-C^{d}\right), \\ \frac{C^{d}}{\varepsilon}, & \text { if } \quad \varepsilon \leq \exp \left(-C^{d}\right) .\end{cases}
$$

Using the Bukh-Chao result:

$$
N(\varepsilon, d) \leq \begin{cases}\frac{C \ln d}{\varepsilon^{2}} \ln ^{2}\left(\frac{1}{\varepsilon}\right), & \text { if } \quad \varepsilon \geq \frac{\ln ^{2} d}{d}, \\ \frac{C d}{\varepsilon} \ln \left(\frac{1}{\varepsilon}\right), & \text { if } \quad \frac{\ln ^{2} d}{d} \geq \varepsilon \geq \exp (-C d \ln d), \\ \frac{C d^{2} \ln d}{\varepsilon}, & \text { if } \quad \varepsilon \leq \exp (-C d \ln d) .\end{cases}
$$

New bounds.

Theorem (small ε)

Let $d \geq 2$ and $\varepsilon \leq 1 / 2$. Then
(i) $\quad N(\varepsilon, d) \leq \frac{C \ln d}{\varepsilon} \ln \left(\frac{1}{\varepsilon}\right)$, provided that $\varepsilon \leq \exp (-d)$,
(ii) $\quad N(\varepsilon, d) \leq \frac{C d}{\varepsilon} \ln \ln \left(\frac{2}{\varepsilon}\right)$, provided that $\varepsilon \geq \exp (-d)$.

Moreover, the random choice of points uniformly distributed on $[0,1]^{d}$ works.

New bounds.

Theorem (small ε)

Let $d \geq 2$ and $\varepsilon \leq 1 / 2$. Then
(i) $\quad N(\varepsilon, d) \leq \frac{C \ln d}{\varepsilon} \ln \left(\frac{1}{\varepsilon}\right), \quad$ provided that $\quad \varepsilon \leq \exp (-d)$,
(ii) $\quad N(\varepsilon, d) \leq \frac{C d}{\varepsilon} \ln \ln \left(\frac{2}{\varepsilon}\right), \quad$ provided that $\quad \varepsilon \geq \exp (-d)$.

Moreover, the random choice of points uniformly distributed on $[0,1]^{d}$ works.
Thus, for $\varepsilon \leq \exp (-d)$ we have

$$
\frac{\ln d}{6 \varepsilon} \leq N(\varepsilon, d) \leq \frac{C \ln d}{\varepsilon} \ln \left(\frac{1}{\varepsilon}\right)
$$

In (ii) the improvement is only in substitution of $\ln (1 / \varepsilon)$ with $\ln \ln (1 / \varepsilon)$.

New bounds.

Hinrichs-Krieg-Kunsch-Rudolf (20): for a random choice of points
$\max \left\{\frac{c}{\varepsilon} \ln \left(\frac{1}{\varepsilon}\right), \frac{d}{2 \varepsilon}\right\} \leq N_{\text {ran }}(\varepsilon, d)$

New bounds.

Hinrichs-Krieg-Kunsch-Rudolf (20): for a random choice of points

$$
\max \left\{\frac{c}{\varepsilon} \ln \left(\frac{1}{\varepsilon}\right), \frac{d}{2 \varepsilon}\right\} \leq N_{\text {ran }}(\varepsilon, d) \leq \max \left\{\frac{C \ln d}{\varepsilon} \ln \left(\frac{1}{\varepsilon}\right), \frac{C d}{\varepsilon} \ln \ln \left(\frac{2}{\varepsilon}\right)\right\}
$$

Theorem (relatively large ε)

Let $d \geq 2$ and $\frac{\ln d}{d} \leq \varepsilon \leq 1 / 2$. Then

$$
N(\varepsilon, d) \leq \frac{C \ln d}{\varepsilon^{2}} \ln \left(\frac{1}{\varepsilon}\right) .
$$

New bounds.

Hinrichs-Krieg-Kunsch-Rudolf (20): for a random choice of points

$$
\max \left\{\frac{c}{\varepsilon} \ln \left(\frac{1}{\varepsilon}\right), \frac{d}{2 \varepsilon}\right\} \leq N_{r a n}(\varepsilon, d) \leq \max \left\{\frac{C \ln d}{\varepsilon} \ln \left(\frac{1}{\varepsilon}\right), \frac{C d}{\varepsilon} \ln \ln \left(\frac{2}{\varepsilon}\right)\right\}
$$

Theorem (relatively large ε)

Let $d \geq 2$ and $\frac{\ln d}{d} \leq \varepsilon \leq 1 / 2$. Then

$$
N(\varepsilon, d) \leq \frac{C \ln d}{\varepsilon^{2}} \ln \left(\frac{1}{\varepsilon}\right) .
$$

The bound here is better when $\varepsilon \geq \frac{\ln ^{2} d}{d \ln \ln (2 d)}$.

New bounds.

Hinrichs-Krieg-Kunsch-Rudolf (20): for a random choice of points

$$
\max \left\{\frac{c}{\varepsilon} \ln \left(\frac{1}{\varepsilon}\right), \frac{d}{2 \varepsilon}\right\} \leq N_{r a n}(\varepsilon, d) \leq \max \left\{\frac{C \ln d}{\varepsilon} \ln \left(\frac{1}{\varepsilon}\right), \frac{C d}{\varepsilon} \ln \ln \left(\frac{2}{\varepsilon}\right)\right\}
$$

Theorem (relatively large ε)

Let $d \geq 2$ and $\frac{\ln d}{d} \leq \varepsilon \leq 1 / 2$. Then

$$
N(\varepsilon, d) \leq \frac{C \ln d}{\varepsilon^{2}} \ln \left(\frac{1}{\varepsilon}\right) .
$$

The bound here is better when $\varepsilon \geq \frac{\ln ^{2} d}{d \ln \ln (2 d)}$.
The prove also uses random points, but one needs to adjust the distribution.

State of the art.

$$
N(\varepsilon, d) \leq \begin{cases}\frac{C \ln d}{\varepsilon^{2}} \ln \left(\frac{1}{\varepsilon}\right), & \text { if } \varepsilon \geq \frac{\ln ^{2} d}{d \ln \ln (2 d)} \\ \frac{C d}{\varepsilon} \ln \ln \left(\frac{1}{\varepsilon}\right), & \text { if } \frac{\ln ^{2} d}{d \ln \ln (2 d)} \geq \varepsilon \geq e^{-d} \\ \frac{C \ln d}{\varepsilon} \ln \left(\frac{1}{\varepsilon}\right), & \text { if } e^{-d} \geq \varepsilon \geq \exp (-C d \ln d) \\ \frac{C d^{2} \ln d}{\varepsilon}, & \text { if } \varepsilon \leq \exp (-C d \ln d)\end{cases}
$$

Some ideas of the proof.

Consider a set P of random points independently and uniformly distributed in the cube. To show that (with good probability) every box of volume ε contains at least one point from P, we need to construct a set \mathcal{N} of "test boxes." It should satisfy
each rectangle in \mathcal{N} contains a point from $P \quad \Longrightarrow$
each rectangle in \mathcal{R}_{d} of volume at least ε contains a point from P.

Some ideas of the proof.

Consider a set P of random points independently and uniformly distributed in the cube. To show that (with good probability) every box of volume ε contains at least one point from P, we need to construct a set \mathcal{N} of "test boxes." It should satisfy
each rectangle in \mathcal{N} contains a point from $P \quad \Longrightarrow$
each rectangle in \mathcal{R}_{d} of volume at least ε contains a point from P.
Standardly, using union bound, one estimates the probability of the "bad" event

$$
\text { there exists a rectangle in } \mathcal{N} \text { containing no points from } P
$$

as the sum of "bad" probabilities of individual events,
a given rectangle in \mathcal{N} containing no points from P.

Some ideas of the proof.

Consider a set P of random points independently and uniformly distributed in the cube. To show that (with good probability) every box of volume ε contains at least one point from P, we need to construct a set \mathcal{N} of "test boxes." It should satisfy
each rectangle in \mathcal{N} contains a point from $P \quad \Longrightarrow$
each rectangle in \mathcal{R}_{d} of volume at least ε contains a point from P.
Standardly, using union bound, one estimates the probability of the "bad" event

$$
\text { there exists a rectangle in } \mathcal{N} \text { containing no points from } P
$$ as the sum of "bad" probabilities of individual events, a given rectangle in \mathcal{N} containing no points from P.

Individual bounds are simple - volume computations.

Some ideas of the proof.

Consider a set P of random points independently and uniformly distributed in the cube. To show that (with good probability) every box of volume ε contains at least one point from P, we need to construct a set \mathcal{N} of "test boxes." It should satisfy
each rectangle in \mathcal{N} contains a point from $P \quad \Longrightarrow$
each rectangle in \mathcal{R}_{d} of volume at least ε contains a point from P.
Standardly, using union bound, one estimates the probability of the "bad" event

$$
\text { there exists a rectangle in } \mathcal{N} \text { containing no points from } P
$$ as the sum of "bad" probabilities of individual events, a given rectangle in \mathcal{N} containing no points from P.

Individual bounds are simple - volume computations. Thus the main difficulty is to construct the set \mathcal{N} of not too large cardinality.

Some ideas of the proof.

Consider a set P of random points independently and uniformly distributed in the cube. To show that (with good probability) every box of volume ε contains at least one point from P, we need to construct a set \mathcal{N} of "test boxes." It should satisfy
each rectangle in \mathcal{N} contains a point from $P \quad \Longrightarrow$
each rectangle in \mathcal{R}_{d} of volume at least ε contains a point from P.
Standardly, using union bound, one estimates the probability of the "bad" event

$$
\text { there exists a rectangle in } \mathcal{N} \text { containing no points from } P
$$

as the sum of "bad" probabilities of individual events,

$$
\text { a given rectangle in } \mathcal{N} \text { containing no points from } P \text {. }
$$

Individual bounds are simple - volume computations.
Thus the main difficulty is to construct the set \mathcal{N} of not too large cardinality. Rudolf used the concept of δ-cover to construct \mathcal{N} (and bounds due to Gnewuch).

Some ideas of the proof.

Consider a set P of random points independently and uniformly distributed in the cube. To show that (with good probability) every box of volume ε contains at least one point from P, we need to construct a set \mathcal{N} of "test boxes." It should satisfy
each rectangle in \mathcal{N} contains a point from $P \quad \Longrightarrow$
each rectangle in \mathcal{R}_{d} of volume at least ε contains a point from P.
Standardly, using union bound, one estimates the probability of the "bad" event

$$
\text { there exists a rectangle in } \mathcal{N} \text { containing no points from } P
$$

as the sum of "bad" probabilities of individual events,

$$
\text { a given rectangle in } \mathcal{N} \text { containing no points from } P \text {. }
$$

Individual bounds are simple - volume computations.
Thus the main difficulty is to construct the set \mathcal{N} of not too large cardinality.
Rudolf used the concept of δ-cover to construct \mathcal{N} (and bounds due to Gnewuch).
We use a different approach, which fits better this problem.

Some ideas of the proof.

Denote

$$
\mathcal{B}_{\varepsilon, d}:=\left\{B \in \mathcal{R}_{d}| | B \mid \geq \varepsilon\right\} .
$$

Definition. We say that $\mathcal{N} \subset \mathcal{R}_{d}$ is a δ-net for $\mathcal{B}_{\varepsilon, d}$ if

$$
\forall B \in \mathcal{B}_{\varepsilon, d} \exists B_{0} \in \mathcal{N}: \quad B_{0} \subset B \quad \text { and } \quad\left|B_{0}\right| \geq(1-\delta)|B| .
$$

Some ideas of the proof.

Denote

$$
\mathcal{B}_{\varepsilon, d}:=\left\{B \in \mathcal{R}_{d}| | B \mid \geq \varepsilon\right\} .
$$

Definition. We say that $\mathcal{N} \subset \mathcal{R}_{d}$ is a δ-net for $\mathcal{B}_{\varepsilon, d}$ if

$$
\forall B \in \mathcal{B}_{\varepsilon, d} \exists B_{0} \in \mathcal{N}: \quad B_{0} \subset B \quad \text { and } \quad\left|B_{0}\right| \geq(1-\delta)|B| .
$$

A variant of the following lemma using random points and the union bound was proved by Rudolf.

Lemma (size of a net)

Let $d \geq 1$ and $\varepsilon, \delta \in(0,1)$. Let \mathcal{N} be a δ-net for $\mathcal{B}_{\varepsilon, d}$ with $|\mathcal{N}| \geq 3$. Then with probability at least $1-1 /|\mathcal{N}|$

$$
N=\left\lfloor\frac{3 \ln |\mathcal{N}|}{(1-\delta) \varepsilon}\right\rfloor .
$$

a random choice of N points satisfies the desire property.

Proof of the lemma.

Consider N independent random points X_{1}, \ldots, X_{N} uniformly drawn from $[0,1]^{d}$. It is enough to show that

$$
\forall B \in \mathcal{N} \quad \text { with }|B| \geq v=(1-\delta) \varepsilon \quad \exists j \leq N: \quad X_{j} \in B
$$

Proof of the lemma.

Consider N independent random points X_{1}, \ldots, X_{N} uniformly drawn from $[0,1]^{d}$. It is enough to show that

$$
\forall B \in \mathcal{N} \quad \text { with }|B| \geq v=(1-\delta) \varepsilon \quad \exists j \leq N: \quad X_{j} \in B
$$

Fix such a box B. Using independence of X_{j} 's,

$$
\mathbb{P}\left(\left\{\forall j \leq N: \quad X_{j} \notin B\right\}\right)=(1-v)^{N}<\exp (-v N) .
$$

Proof of the lemma.

Consider N independent random points X_{1}, \ldots, X_{N} uniformly drawn from $[0,1]^{d}$. It is enough to show that

$$
\forall B \in \mathcal{N} \quad \text { with }|B| \geq v=(1-\delta) \varepsilon \quad \exists j \leq N: \quad X_{j} \in B
$$

Fix such a box B. Using independence of X_{j} 's,

$$
\mathbb{P}\left(\left\{\forall j \leq N: \quad X_{j} \notin B\right\}\right)=(1-v)^{N}<\exp (-v N) .
$$

Therefore, by the union bound,

$$
\mathbb{P}\left(\left\{\exists B \in \mathcal{N}:|B| \geq v \quad \text { and } \quad \forall j \leq N: \quad X_{j} \notin B\right\}\right)<|\mathcal{N}| \exp (-v N) .
$$

Proof of the lemma.

Consider N independent random points X_{1}, \ldots, X_{N} uniformly drawn from $[0,1]^{d}$. It is enough to show that

$$
\forall B \in \mathcal{N} \quad \text { with }|B| \geq v=(1-\delta) \varepsilon \quad \exists j \leq N: \quad X_{j} \in B
$$

Fix such a box B. Using independence of X_{j} 's,

$$
\mathbb{P}\left(\left\{\forall j \leq N: \quad X_{j} \notin B\right\}\right)=(1-v)^{N}<\exp (-v N) .
$$

Therefore, by the union bound,

$$
\mathbb{P}\left(\left\{\exists B \in \mathcal{N}:|B| \geq v \quad \text { and } \quad \forall j \leq N: \quad X_{j} \notin B\right\}\right)<|\mathcal{N}| \exp (-v N) .
$$

Thus, as far as

$$
|\mathcal{N}| \exp (-v N) \leq 1
$$

there exists a realization of X_{j} 's with the desired property.

Construction of a net.

Dispersion on the torus.

We consider periodic axis parallel boxes, that is, boxes of the form

$$
\prod_{i=1}^{d} I_{i}\left(a_{i}, b_{i}\right), \quad a_{i}, b_{i} \in[0,1]
$$

where

$$
I_{i}(a, b):= \begin{cases}\left(a_{i}, b_{i}\right), & \text { whenever } 0 \leq a_{i}<b_{i} \leq 1, \\ {[0,1] \backslash\left[b_{i}, a_{i}\right],} & \text { whenever } 0 \leq b_{i}<a_{i} \leq 1\end{cases}
$$

Dispersion on the torus.

We consider periodic axis parallel boxes, that is, boxes of the form

$$
\prod_{i=1}^{d} I_{i}\left(a_{i}, b_{i}\right), \quad a_{i}, b_{i} \in[0,1]
$$

where

$$
I_{i}(a, b):= \begin{cases}\left(a_{i}, b_{i}\right), & \text { whenever } 0 \leq a_{i}<b_{i} \leq 1, \\ {[0,1] \backslash\left[b_{i}, a_{i}\right],} & \text { whenever } 0 \leq b_{i}<a_{i} \leq 1\end{cases}
$$

Combining recent results of M. Ullrich (18) and Rudolf (18)

$$
\frac{d}{\varepsilon} \leq \widetilde{N}(\varepsilon, d) \leq \frac{8 d}{\varepsilon}\left(\ln d+\ln \left(\frac{8}{\varepsilon}\right)\right) .
$$

Dispersion on the torus.

We consider periodic axis parallel boxes, that is, boxes of the form

$$
\prod_{i=1}^{d} I_{i}\left(a_{i}, b_{i}\right), \quad a_{i}, b_{i} \in[0,1]
$$

where

$$
I_{i}(a, b):= \begin{cases}\left(a_{i}, b_{i}\right), & \text { whenever } 0 \leq a_{i}<b_{i} \leq 1, \\ {[0,1] \backslash\left[b_{i}, a_{i}\right],} & \text { whenever } 0 \leq b_{i}<a_{i} \leq 1\end{cases}
$$

Combining recent results of M. Ullrich (18) and Rudolf (18)

$$
\frac{d}{\varepsilon} \leq \widetilde{N}(\varepsilon, d) \leq \frac{8 d}{\varepsilon}\left(\ln d+\ln \left(\frac{8}{\varepsilon}\right)\right) .
$$

Note that the VC dimension of the set of periodic axis parallel boxes is of the order $d \ln d$, therefore the Blumer-Ehrenfeucht-Haussler-Warmuth result leads to

$$
\widetilde{N}(\varepsilon, d) \leq \frac{8 d \ln d}{\varepsilon} \ln \left(\frac{8}{\varepsilon}\right)
$$

- worse than the Rudolf bound.

Dispersion on the torus.

$$
\frac{d}{\varepsilon} \leq \widetilde{N}(\varepsilon, d) \leq \frac{8 d}{\varepsilon}\left(\ln d+\ln \left(\frac{8}{\varepsilon}\right)\right)
$$

We improve the Rudolf upper bound in the case $\varepsilon \leq 1 / d^{C}$.

Theorem (bounds in the periodic case)

Let $d \geq 2$ and $\varepsilon \in(0,1 / 2]$. Then

$$
\begin{equation*}
\widetilde{N}(\varepsilon, d) \leq \frac{C \ln d}{\varepsilon} \ln \left(\frac{1}{\varepsilon}\right), \quad \text { provided that } \quad \varepsilon \leq \exp (-d) \tag{i}
\end{equation*}
$$

Moreover, the random choice of points uniformly distributed on $[0,1]^{d}$ works.

