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The main question

Classify all tetrahedra in  with “rational” angles, i.e. classify all 6-tuples of the form 
 that correspond to (non-degenerate) tetrahedra 

as shown below: an  angle corresponds to the edge joining vertices  and .  

 

ℝ3

(α12, α34, α13, α24, α14, α23) ∈ (πℚ)6
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as it appears in the work of Conway and Jones (1976)

1

2
3

4



Another question

Classify all rectifiable tetrahedra in , i.e.  

those that are scissors—congruent to a cube 

Scissor congruence: two polytopes  and  are scissors—congruent  

if one can cut  into a finite number of tetrahedra and reassemble  

(this definition is not very formal …)

ℝ3

P P′�

P P′�

which is more ancient (and way harder!)



Scissor congruence

One (obvious) invariant is volume: we are cutting into a finite amount  

of pieces and reassembling, so that no Banach—Tarski paradox takes place 

Are there other (independent) invariants? 

and its invariants 



Scissors congruence

The Dehn invariant of a polytope  is given by
 

Theorem (Dehn  in 1901, Sydler  in 1964) : 

Two polytopes  and  in  are scissors—congruent  

if and only if  and  

(and, later on, Jessen gave a simpler proof …)

P ⊂ ℝ3

D(P) = ∑
edges e

length(e) ⊗ℚ angle(e) ∈ ℝ ⊗ℚ (ℝ/πℤ)

⇒ ⇐

P P′� ℝ3

vol(P) = vol(P′�) D(P) = D(P′�)

and its invariants



The main result

Theorem (KKPR, 2020): There are 2 parametric families of “rational” tetrahedra,  

  

and 

 ,  

together with 59 sporadic instances, up to geometric symmetries. 

(π/2, π/2, π − 2t, π/3, t, t), π/6 < t < π/2,

(5π/6 − t, π/6 + t, 2π/3 − t, 2π/3 − t, t, t), π/6 < t ≤ π/3

(well, one of the two …)



N Dihedral angles as multiples of  
12 
24

(3, 4, 3, 4, 6, 8) 
(5, 9, 6, 8, 13, 15)

12 
24

(3, 6, 4, 6, 4, 6) 
(7, 11, 7, 13, 8, 12)

15 (3, 3, 3, 5, 10, 10),    (2, 4, 4, 4, 10, 10),    (3, 3, 4, 4, 9, 11)
15 (3, 3, 5, 5, 9, 9)
15 (5, 5, 5, 9, 6, 6),    (3, 7, 6, 6, 7, 7),     (4, 8, 5, 5, 7, 7)
21 (3, 9, 7, 7, 12, 12),    (4, 10, 6, 6, 12, 12),    (6, 6, 7, 7, 9, 15)
30 

60

(6, 12, 10, 15, 10, 20),    (4, 14, 10, 15, 12, 18) 

(8, 28, 19, 31, 25, 35), (12, 24, 15, 35, 25, 35),(13, 23, 15, 35, 24, 36), (13, 23, 19, 31, 20, 40)

30 (6, 18, 10, 10, 15, 15),    (4, 16, 12, 12, 15, 15),    (9, 21, 10, 10, 12, 12)
30 

60

(6, 6, 10, 12, 15, 20) ,    (5, 7, 11, 11, 15, 20) 

(7, 17, 20, 24, 35, 35), (7, 17, 22, 22, 33, 37), (10, 14, 17, 27, 35, 35), (12, 12, 17, 27, 33, 37)

30 

60

(6, 10, 10, 15, 12, 18),    (5, 11, 10, 15, 13, 17) 

(10, 22, 21, 29, 25, 35), (11, 21, 19, 31, 26, 34), (11, 21, 21, 29, 24, 36), (12, 20, 19, 31, 25, 35)

30 
60

(6, 10, 6, 10, 15, 24) 
(7, 25, 12, 20, 35, 43)

30 
60

(6, 12, 6, 12, 15, 20) 
(12, 24, 13, 23, 29, 41)

30 

60

(6, 12, 10, 10, 15, 18),    (7, 13, 9, 9, 15, 18) 

(12, 24, 17, 23, 33, 33), (14, 26, 15, 21, 33, 33), (15, 21, 20, 20, 27, 39), (17, 23, 18, 18, 27, 39)

30 

60

(6, 15, 6, 18, 10, 20),    (6, 15, 7, 17, 9, 21) 

(9, 33, 14, 34, 21, 39), (9, 33, 15, 33, 20, 40), (11, 31, 12, 36, 21, 39), (11, 31, 15, 33, 18, 42)

30 (6, 15, 10, 15, 12, 15),     (6, 15, 11, 14, 11, 16),       (8, 13, 8, 17, 12, 15), 
(8, 13, 9, 18, 11, 14),       (8, 17, 9, 12, 11, 16),        (9, 12, 9, 18, 10, 15)

30 
60

(10, 12, 10, 12, 15, 12) 
(19, 25, 20, 24, 29, 25)

π/N



The main result

Theorem (KKPR, 2020): Up to geometric symmetries, there are finitely many maximal 
“rational” line configurations in  (i.e. line configurations with all angles between the 
lines ). 

ℝ3

∈ πℚ

(a more general statement)

# of maximal “rational”     —line configurations
1

15 1
9 1
8 5
6 22 sporadic, 5 one-parameter families
5 29 sporadic, 2 one-parameter families

4 228 sporadic, 10 one-parameter  
and 2 two-parameter families

3 a single 3-parameter family

ℵ0

nn



The main result

The only infinite maximal configuration is the perpendicular one.  

This configuration has to be infinite (for maximality).

(some more comments)



The main result

There are other two more remarkable ones:  

the one coming from the icosidodecahedron (left) with 15 lines 

and the one coming from the  roots system (right) with 9 linesB3

(some more comments)



Regge symmetry

Theorem (Ponzano—Regge, 1960’s): For any (non-degenerate) tetrahedron with 
dihedral angles  there exists a (non-degenerate) 
tetrahedron with dihedral angles , where 

.  

This theorem was discovered by theoretical physicists studying quantum gravity. 

(α12, α34, α13, α24, α14, α23)
(α12, α34, σ − α13, σ − α24, σ − α14, σ − α23)

σ =
1
2

(α13 + α24 + α14 + α23)

and its properties



Regge symmetry

The Regge group  is the symmetric group  (geometric symmetries of the 
tetrahedron) enhanced by the Regge involution (from the previous slide). This is a 
finite group of order 144 that is isomorphic to .  

The Regge group  preserves both the volume (Ponzano—Regge, 1960) and Dehn 
invariant (Roberts, 1999). 

ℜ 𝔖4

𝔖4 × 𝔖3

ℜ

and its properties



Regge symmetry

The 1st family of tetrahedra  was discovered by Hill (1895). 
The 2nd family  is produced by applying the 
Regge involution.  

The entries in our table of sporadic tetrahedra are grouped with respect to the action 
of both  (geometric symmetries) and  (the Regge group).

(π/2, π/2, π − 2t, π/3, t, t)
(5π/6 − t, π/6 + t, 2π/3 − t, 2π/3 − t, t, t)

𝔖4 ℜ

(back to our theorems)



Bigger symmetry groups

For line configurations, however, we can also negate individual vectors that define line 
directions: thus, we use  instead (and also a “bigger” Regge group 

).  

The role of symmetries in our computations and proofs:  

symmetry reduction greatly reduces the workload and runtime.  

The biggest (finite) group we use is , the Weyl group of  root system, of order 
23040 (comes into play later on).

𝔖±
4 = 𝔖4 ⋉ {±1}4

ℜ±

W(D6) D6

for line configurations, and other objects



Computer—aided proofs

Our main theorems have computer-aided proofs. We heavily use computations to find 
the answers, as well as to prove that they are correct (in particular, that we produce 
complete classifications).  

This puts our results in the same category (take it with a grain of salt!) as the 4-colour 
theorem or the proof of Kepler’s conjecture (a word to our defence: we don’t claim the 
“significance” category, only the “methods of proofs” one!)

(a philosophical interlude)



An outline of the proof

First, find the “rational” 4—line configurations (some of them will right away give the 
“rational” tetrahedra up to the transformation ).  

To this end, we find the 6—tuples of angles giving rise to symmetric matrices 
that satisfy the Gram determinant equation 

θ → π − θ =: α

{θij}4
i,j=1



An outline of the proof

We can rewrite it as a polynomial equation in the polynomial variables : 

Above we have a Laurent polynomial in 6 variables: let’s call it the Gram polynomial.  

Solving it in the roots of unity will give us “rational” solutions to the initial Gram 
determinant equation. 

zij = exp(2iθij)



Solving Laurent polynomials in the roots of unity

There are two methods that we can try to employ: classifying vanishing sums of roots 
of unity (known up to 12 roots, by the work of Mann, Włodarski, Conway and Jones, 
Poonen and Rubinstein), and using commutative algebra to obtain torsion closures of 
polynomial ideals (following the work of Ruppert, Beukers and Smyth, and Aliev and 
Smyth).



Solving Laurent polynomials in the roots of unity

Vanishing sums: let  be a sum of roots of unity. Then if  the only the 
following cases hold:  

•  ’s cancel in pairs: for some  (i.e. up to rotation, for each pair); 

• ’s form two triples of the form , for some , for 
each triple; 

• as a set ’s are  (up to simultaneous 
rotation).  

Note: vanishing sums are classified up to 12 roots of unity.

ζ1 + … + ζn n = 6

ζi ζ ⋅ 1 + ζ ⋅ eiπ, ζ ∈ 𝕊1

ζi ζ ⋅ 1 + ζ ⋅ e2π/3 + ζ ⋅ e4π/3 ζ ∈ 𝕊1

ζi {−e−2πi/3, − e4πi/3, e2πi/5, e4πi/5, e6πi/5, e8πi/5}



Solving Laurent polynomials in the roots of unity

Torsion closures: this method is base of the following observation + induction by the 
dimension of the corresponding algebraic variety and the number of variables.  

If , for  roots of unity, then (depending on the orders)  also solve one 
of the following polynomials:  ,  ,  ,  , ,  

, or . Then we take the resultant to intersect the two resulting 
curves. The torsion closure of the ideal  is obtain in this way after a finite 
number of steps. 

Note: this method works well for  variables, but becomes infeasible for .

f(x, y) = 0 x, y x, y
f(−x, y) f(x, − y) f(−x, − y) f(x2, y2) f(−x2, y2)

f(x2, − y2) f(−x2, − y2)
I = ⟨ f(x, y)⟩

n = 2 n ≥ 4



Solving Laurent polynomials in the roots of unity

The Gram polynomial is 

where each sum ranges of the —orbit of each monomial and each possible choice 
of signs. It enjoys a large symmetry group:  of order 23040. 

There we have  monomials and 6 variables.

𝔖4
W(D6)

1 + 4 ⋅ 23 + 6 ⋅ 21 + 3 ⋅ 24 + 3 ⋅ 22 = 105



Solving Laurent polynomials in roots of unity

An obvious complication: we have a polynomial with 105 monomial in 6 variables! 

This is beyond the reach of both approaches outlined above  

(105 is much bigger than 12, and 6 variables are about 2 variables too many!)  



An outline of the proof

Finally, we get a chance to unite both approaches by using the following observation: 

reducing modulo  produces the polynomial 

                                                                                                        

with  monomials and 6 variables. 

By classifying vanishing sums of roots of unity  (which is similar to the 
classification of Poonen and Rubinstein), we obtain families of solutions with up to  
free parameters (= variables). Then we can proceed to torsion closures!

2

12

mod 2
3

(reduce mod 2 and then come back)



An outline of the proof

• Start with a computation to find solutions with small denominators (up to ). This gives a conjectural 
classification for sporadic instances. This is done by using C/C++ code. (Also SageMath to double-check) 

• Classify all vanishing sums of up to  roots of unity and match them with the  monomials in the 
 reduced Gram polynomial. Then come back to the original Gram polynomial. (SageMath) 

• Use  symmetry to reduce the number of equations down to a feasible amount. Solve them by 
finding torsion closures via the commutative algebra approach. This gives all parametric solutions. This 
also confirms that all sporadic ones have denominators . (SageMath) 

• For the parametric solutions, use the geometry of convex polyhedra (in , since we have to deal with line 
configurations and tetrahedra, and the existence conditions, as well as in , since we have —tuples of 
angles describing our solutions!) in order to convert algebraic solutions into geometric solutions (for 
parametric families). (SageMath)

420

12 12
mod 2

W(D6)

≤ 420

ℝ3

ℝ6 6

(main steps)



An outline of the proof

As soon as we are done classifying —line configurations, we can attempt classifying all —line 
configurations with  by using the following fact: an —line configuration is realisable if and only 
if each of its —line subconfigurations is realisable.  

Thus we can try to repeatedly enhance each of the already found —line configurations, and check if 
all their —line subconfigurations belong to the list that we compiled (by using both sporadic and 
parametric solutions). This, however,  requires an extensive tree search (here MAGMA is used).  

We check up to  in order to make sure that there are no rational line configurations with more 
than  lines, except for the perpendicular one. Finally, only the maximal ones are listed.

4 n
n ≥ 5 n

4

4
4

n = 16
15

(main steps)



Thank you ! 
(more details in arXiv:2011.14232)


