String graphs have the Erdős-Hajnal property

István Tomon

ETH Zurich and MIPT

Erdős-Hajnal conjecture

- A family \mathcal{G} of graphs has the Erdős-Hajnal property, if there exists $c>0$ such that every $G \in \mathcal{G}$ contains a clique or an independent set of size $|V(G)|^{c}$.

Erdős-Hajnal conjecture

- A family \mathcal{G} of graphs has the Erdős-Hajnal property, if there exists $c>0$ such that every $G \in \mathcal{G}$ contains a clique or an independent set of size $|V(G)|^{c}$.

Erdős-Hajnal conjecture (1989)

Let H be a graph and let \mathcal{G} be the family of graphs that do not contain H as an induced subgraph. Then \mathcal{G} has the Erdős-Hajnal property.

Erdős-Hajnal conjecture

- A family \mathcal{G} of graphs has the Erdős-Hajnal property, if there exists $c>0$ such that every $G \in \mathcal{G}$ contains a clique or an independent set of size $|V(G)|^{c}$.

Erdős-Hajnal conjecture (1989)

Let \mathcal{G} be a hereditary family of graphs that is not the family of all graphs. Then \mathcal{G} has the Erdős-Hajnal property.

Intersection graphs

Definition

The intersection graph of a family \mathcal{F} of geometric objects is the graph whose vertices correspond to the elements of \mathcal{F}, and two vertices are joined by edge if the corresponding objects have a nonempty intersection.

Intersection graphs

Definition

The intersection graph of a family \mathcal{F} of geometric objects is the graph whose vertices correspond to the elements of \mathcal{F}, and two vertices are joined by edge if the corresponding objects have a nonempty intersection.

Simple examples of the Erdős-Hajnal property:

Intersection graphs

Definition

The intersection graph of a family \mathcal{F} of geometric objects is the graph whose vertices correspond to the elements of \mathcal{F}, and two vertices are joined by edge if the corresponding objects have a nonempty intersection.

Simple examples of the Erdős-Hajnal property:

- If G is the intersection graph of n intervals, then G is perfect

Intersection graphs

Definition

The intersection graph of a family \mathcal{F} of geometric objects is the graph whose vertices correspond to the elements of \mathcal{F}, and two vertices are joined by edge if the corresponding objects have a nonempty intersection.

Simple examples of the Erdős-Hajnal property:

- If G is the intersection graph of n intervals, then G is perfect $\Rightarrow \max \{\alpha(G), \omega(G)\} \geq \sqrt{n}$.

Intersection graphs

Definition

The intersection graph of a family \mathcal{F} of geometric objects is the graph whose vertices correspond to the elements of \mathcal{F}, and two vertices are joined by edge if the corresponding objects have a nonempty intersection.

Simple examples of the Erdős-Hajnal property:

- If G is the intersection graph of n intervals, then G is perfect $\Rightarrow \max \{\alpha(G), \omega(G)\} \geq \sqrt{n}$.
- If G is the intersection graph of n axis-parallel rectangles, then

$$
\max \{\alpha(G), \omega(G)\}=\Omega\left(\sqrt{\frac{n}{\log n}}\right)
$$

Intersection graphs

Definition

The intersection graph of a family \mathcal{F} of geometric objects is the graph whose vertices correspond to the elements of \mathcal{F}, and two vertices are joined by edge if the corresponding objects have a nonempty intersection.

Simple examples of the Erdős-Hajnal property:

- If G is the intersection graph of n intervals, then G is perfect $\Rightarrow \max \{\alpha(G), \omega(G)\} \geq \sqrt{n}$.
- If G is the intersection graph of n axis-parallel rectangles, then

$$
\max \{\alpha(G), \omega(G)\}=\Omega\left(\sqrt{\frac{n}{\log n}}\right)
$$

Is it also true that $\max \{\alpha(G), \omega(G)\}=\Omega(\sqrt{n})$?

Erdős-Hajnal property for intersection graphs

■ (Larman et al. 1994) If G is the intersection graphs of n convex sets, then

$$
\max \{\alpha(G), \omega(G)\} \geq n^{1 / 5}
$$

Erdős-Hajnal property for intersection graphs

- (Larman et al. 1994) If G is the intersection graphs of n convex sets, then

$$
\max \{\alpha(G), \omega(G)\} \geq n^{1 / 5}
$$

Holds for x-monotone curves as well.

Erdős-Hajnal property for intersection graphs

- (Larman et al. 1994) If G is the intersection graphs of n convex sets, then

$$
\max \{\alpha(G), \omega(G)\} \geq n^{1 / 5}
$$

Holds for x-monotone curves as well. Best known upper bound is $n^{0.405}$ (Kynčl 2012).

Erdős-Hajnal property for intersection graphs

- (Larman et al. 1994) If G is the intersection graphs of n convex sets, then

$$
\max \{\alpha(G), \omega(G)\} \geq n^{1 / 5}
$$

Holds for x-monotone curves as well. Best known upper bound is $n^{0.405}$ (Kynčl 2012). What is the right exponent?

Erdős-Hajnal property for intersection graphs

- (Larman et al. 1994) If G is the intersection graphs of n convex sets, then

$$
\max \{\alpha(G), \omega(G)\} \geq n^{1 / 5}
$$

Holds for x-monotone curves as well.
Best known upper bound is $n^{0.405}$ (Kynčl 2012).
What is the right exponent?

- (Fox, Pach, Tóth 2011) The family of intersection graphs of curves such that any two curves intersect at most k times has the Erdös-Hajnal property.

Erdős-Hajnal property for intersection graphs

- (Larman et al. 1994) If G is the intersection graphs of n convex sets, then

$$
\max \{\alpha(G), \omega(G)\} \geq n^{1 / 5}
$$

Holds for x-monotone curves as well.
Best known upper bound is $n^{0.405}$ (Kynčl 2012).
What is the right exponent?

- (Fox, Pach, Tóth 2011) The family of intersection graphs of curves such that any two curves intersect at most k times has the Erdős-Hajnal property.
- (Alon et al. 2005) A family of semi-algebraic graphs of bounded complexity has the Erdős-Hajnal property.

String graphs

Definition

A string graph is the intersection graph of curves in the plane.

String graphs

Definition

A string graph is the intersection graph of curves in the plane.
Conjecture (Alon et al. 2005, Fox and Pach 2008)
The family of string graphs has the Erdős-Hajnal property.

String graphs

Definition

A string graph is the intersection graph of curves in the plane.

Conjecture (Alon et al. 2005, Fox and Pach 2008)

The family of string graphs has the Erdős-Hajnal property.

- If it is true, it implies the Erdős-Hajnal property of all families of intersection graphs in the plane.

String graphs

Definition

A string graph is the intersection graph of curves in the plane.

Conjecture (Alon et al. 2005, Fox and Pach 2008)

The family of string graphs has the Erdős-Hajnal property.

- If it is true, it implies the Erdős-Hajnal property of all families of intersection graphs in the plane.
- (Fox, Pach 2008) If G is a string graph with n vertices, then

$$
\max \{\alpha(G), \omega(G)\}=n^{\Omega(1 / \log \log n)}
$$

String graphs

Definition

A string graph is the intersection graph of curves in the plane.

Conjecture (Alon et al. 2005, Fox and Pach 2008)

The family of string graphs has the Erdős-Hajnal property.

- If it is true, it implies the Erdős-Hajnal property of all families of intersection graphs in the plane.
- (Fox, Pach 2008) If G is a string graph with n vertices, then

$$
\max \{\alpha(G), \omega(G)\}=n^{\Omega(1 / \log \log n)}
$$

Theorem (T. 2020+)

The conjecture is true.

Strong-Erdős-Hajnal property

Definition

A family \mathcal{G} of graphs has the strong-Erdős-Hajnal property, if there exists $c>0$ such that for every $G \in \mathcal{G}$, either G or \bar{G} contains a bi-clique of size $c|V(G)|$.

Strong-Erdős-Hajnal property

Definition

A family \mathcal{G} of graphs has the strong-Erdős-Hajnal property, if there exists $c>0$ such that for every $G \in \mathcal{G}$, either G or \bar{G} contains a bi-clique of size $c|V(G)|$.

Strong-Erdős-Hajnal property \Rightarrow Erdős-Hajnal property

Strong-Erdős-Hajnal property

Definition

A family \mathcal{G} of graphs has the strong-Erdős-Hajnal property, if there exists $c>0$ such that for every $G \in \mathcal{G}$, either G or \bar{G} contains a bi-clique of size $c|V(G)|$.

Strong-Erdős-Hajnal property \Rightarrow Erdős-Hajnal property

The following families of intersection graphs have the strong-Erdős-Hajnal property:

Strong-Erdős-Hajnal property

Definition

A family \mathcal{G} of graphs has the strong-Erdős-Hajnal property, if there exists $c>0$ such that for every $G \in \mathcal{G}$, either G or \bar{G} contains a bi-clique of size $c|V(G)|$.

Strong-Erdős-Hajnal property \Rightarrow Erdős-Hajnal property

The following families of intersection graphs have the strong-Erdős-Hajnal property:

■ segments (Pach, Solymosi 2001)

Strong-Erdős-Hajnal property

Definition

A family \mathcal{G} of graphs has the strong-Erdős-Hajnal property, if there exists $c>0$ such that for every $G \in \mathcal{G}$, either G or \bar{G} contains a bi-clique of size $c|V(G)|$.

Strong-Erdős-Hajnal property \Rightarrow Erdős-Hajnal property

The following families of intersection graphs have the strong-Erdős-Hajnal property:

- segments (Pach, Solymosi 2001)

■ semi-algebraic graphs (Alon et al. 2005)

Strong-Erdős-Hajnal property

Definition

A family \mathcal{G} of graphs has the strong-Erdős-Hajnal property, if there exists $c>0$ such that for every $G \in \mathcal{G}$, either G or \bar{G} contains a bi-clique of size $c|V(G)|$.

Strong-Erdős-Hajnal property \Rightarrow Erdős-Hajnal property

The following families of intersection graphs have the strong-Erdős-Hajnal property:

- segments (Pach, Solymosi 2001)

■ semi-algebraic graphs (Alon et al. 2005)

- convex sets (Fox, Pach, Tóth 2010)

Strong-Erdős-Hajnal property

Definition

A family \mathcal{G} of graphs has the strong-Erdős-Hajnal property, if there exists $c>0$ such that for every $G \in \mathcal{G}$, either G or \bar{G} contains a bi-clique of size $c|V(G)|$.

Strong-Erdős-Hajnal property \Rightarrow Erdős-Hajnal property

The following families of intersection graphs have the strong-Erdős-Hajnal property:

- segments (Pach, Solymosi 2001)

■ semi-algebraic graphs (Alon et al. 2005)

- convex sets (Fox, Pach, Tóth 2010)
- curves, any two intersect in at most k points (Fox, Pach, Tóth 2011)

Incomparability graphs

The family of string graphs and intersection graphs of x-monotone curves do NOT have the strong-Erdős-Hajnal property.

Incomparability graphs

The family of string graphs and intersection graphs of x-monotone curves do NOT have the strong-Erdős-Hajnal property.

Definition

G is a comparability graph if there exists a partial ordering on $V(G)$ such that $x y \in E(G)$ iff $x<y$ or $y<x$. An incomparability graph is the complement of a comparability graph.

Incomparability graphs

The family of string graphs and intersection graphs of x-monotone curves do NOT have the strong-Erdős-Hajnal property.

Definition

G is a comparability graph if there exists a partial ordering on $V(G)$ such that $x y \in E(G)$ iff $x<y$ or $y<x$. An incomparability graph is the complement of a comparability graph.

■ Every incomparability graph is a string graph (Lovász 1983).

Incomparability graphs

The family of string graphs and intersection graphs of x-monotone curves do NOT have the strong-Erdős-Hajnal property.

Definition

G is a comparability graph if there exists a partial ordering on $V(G)$ such that $x y \in E(G)$ iff $x<y$ or $y<x$. An incomparability graph is the complement of a comparability graph.

■ Every incomparability graph is a string graph (Lovász 1983).

Incomparability graphs

The family of string graphs and intersection graphs of x-monotone curves do NOT have the strong-Erdős-Hajnal property.

Definition

G is a comparability graph if there exists a partial ordering on $V(G)$ such that $x y \in E(G)$ iff $x<y$ or $y<x$. An incomparability graph is the complement of a comparability graph.

■ Every incomparability graph is a string graph (Lovász 1983).

- There exists an incomparability graph G on n vertices such that the largest bi-clique in G and \bar{G} has size $O(n / \log n)$ (Fox 2006).

Almost-strong-Erdős-Hajnal property

- Every dense incomparability graph contains a bi-clique of size $\Omega(n / \log n)($ Fox 2006).

Almost-strong-Erdős-Hajnal property

- Every dense incomparability graph contains a bi-clique of size $\Omega(n / \log n)$ (Fox 2006).
■ Every dense string graph contains a dense incomparability graph (Fox, Pach 2012).

Almost-strong-Erdős-Hajnal property

- Every dense incomparability graph contains a bi-clique of size $\Omega(n / \log n)$ (Fox 2006).
■ Every dense string graph contains a dense incomparability graph (Fox, Pach 2012).
- Therefore, every dense string graph contains a bi-clique of size $\Omega(n / \log n)$.

Almost-strong-Erdős-Hajnal property

- Every dense incomparability graph contains a bi-clique of size $\Omega(n / \log n)$ (Fox 2006).
■ Every dense string graph contains a dense incomparability graph (Fox, Pach 2012).
■ Therefore, every dense string graph contains a bi-clique of size $\Omega(n / \log n)$.
On the other hand:

Almost-strong-Erdős-Hajnal property

- Every dense incomparability graph contains a bi-clique of size $\Omega(n / \log n)$ (Fox 2006).
■ Every dense string graph contains a dense incomparability graph (Fox, Pach 2012).
■ Therefore, every dense string graph contains a bi-clique of size $\Omega(n / \log n)$.
On the other hand:
■ Every string graph with m edges contains a balanced separator of size $O(\sqrt{m})$ (Lee 2017).

Almost-strong-Erdős-Hajnal property

■ Every dense incomparability graph contains a bi-clique of size $\Omega(n / \log n)$ (Fox 2006).
■ Every dense string graph contains a dense incomparability graph (Fox, Pach 2012).

- Therefore, every dense string graph contains a bi-clique of size $\Omega(n / \log n)$.
On the other hand:
■ Every string graph with m edges contains a balanced separator of size $O(\sqrt{m})$ (Lee 2017).

Almost-strong-Erdős-Hajnal property

■ Every dense incomparability graph contains a bi-clique of size $\Omega(n / \log n)$ (Fox 2006).
■ Every dense string graph contains a dense incomparability graph (Fox, Pach 2012).

- Therefore, every dense string graph contains a bi-clique of size $\Omega(n / \log n)$.
On the other hand:
■ Every string graph with m edges contains a balanced separator of size $O(\sqrt{m})$ (Lee 2017).

Almost-strong-Erdős-Hajnal property

■ Every dense incomparability graph contains a bi-clique of size $\Omega(n / \log n)$ (Fox 2006).
■ Every dense string graph contains a dense incomparability graph (Fox, Pach 2012).

- Therefore, every dense string graph contains a bi-clique of size $\Omega(n / \log n)$.
On the other hand:
■ Every string graph with m edges contains a balanced separator of size $O(\sqrt{m})$ (Lee 2017).

Almost-strong-Erdős-Hajnal property

■ Every dense incomparability graph contains a bi-clique of size $\Omega(n / \log n)$ (Fox 2006).
■ Every dense string graph contains a dense incomparability graph (Fox, Pach 2012).
■ Therefore, every dense string graph contains a bi-clique of size $\Omega(n / \log n)$.
On the other hand:
■ Every string graph with m edges contains a balanced separator of size $O(\sqrt{m})$ (Lee 2017).

- Therefore, the complement of every sparse string graph contains a linear sized bi-clique.

Almost-strong-Erdős-Hajnal property

■ Every dense incomparability graph contains a bi-clique of size $\Omega(n / \log n)$ (Fox 2006).
■ Every dense string graph contains a dense incomparability graph (Fox, Pach 2012).

- Therefore, every dense string graph contains a bi-clique of size $\Omega(n / \log n)$.
On the other hand:
■ Every string graph with m edges contains a balanced separator of size $O(\sqrt{m})$ (Lee 2017).
- Therefore, the complement of every sparse string graph contains a linear sized bi-clique.

Theorem

If G is a string graph on n vertices, then either G contains a bi-clique of size $\Omega(n / \log n)$, or the complement of G contains a bi-clique of size $\Omega(n)$.

Quasi-Erdős-Hajnal property

Definition

A family of graphs \mathcal{G} has the quasi-Erdős-Hajnal property, if there exists $c=c(\mathcal{G})>0$ such that the following holds. For every $G \in \mathcal{G}$ there exist t and t disjoint subsets X_{1}, \ldots, X_{t} such that $t \geq\left(\frac{|V(G)|}{\left|X_{i}\right|}\right)^{c}$, and either every X_{i} is complete to every X_{j}, or there are no edges between any X_{i} and X_{j}.

Quasi-Erdős-Hajnal property

Definition

A family of graphs \mathcal{G} has the quasi-Erdös-Hajnal property, if there exists $c=c(\mathcal{G})>0$ such that the following holds. For every $G \in \mathcal{G}$ there exist t and t disjoint subsets X_{1}, \ldots, X_{t} such that $t \geq\left(\frac{|V(G)|}{\left|X_{i}\right|}\right)^{c}$, and either every X_{i} is complete to every X_{j}, or there are no edges between any X_{i} and X_{j}.

Quasi-Erdős-Hajnal property \Leftrightarrow Erdős-Hajnal property

Quasi-Erdős-Hajnal property

Definition

A family of graphs \mathcal{G} has the quasi-Erdős-Hajnal property, if there exists $c=c(\mathcal{G})>0$ such that the following holds. For every $G \in \mathcal{G}$ there exist t and t disjoint subsets X_{1}, \ldots, X_{t} such that $t \geq\left(\frac{|V(G)|}{\left|X_{i}\right|}\right)^{c}$, and either every X_{i} is complete to every X_{j}, or there are no edges between any X_{i} and X_{j}.

Quasi-Erdős-Hajnal property \Leftrightarrow Erdős-Hajnal property

```
Lemma (T. 2020+)
```

If G is a dense incomparability graph on n vertices, then there exist t and t disjoint sets X_{1}, \ldots, X_{t} such that $t \geq\left(\frac{|n|}{\left|X_{i}\right|}\right)^{c}$, and X_{i} is complete to X_{j}.

Quasi-Erdős-Hajnal property

Definition

A family of graphs \mathcal{G} has the quasi-Erdős-Hajnal property, if there exists $c=c(\mathcal{G})>0$ such that the following holds. For every $G \in \mathcal{G}$ there exist t and t disjoint subsets X_{1}, \ldots, X_{t} such that $t \geq\left(\frac{|V(G)|}{\left|X_{i}\right|}\right)^{c}$, and either every X_{i} is complete to every X_{j}, or there are no edges between any X_{i} and X_{j}.

Quasi-Erdős-Hajnal property \Leftrightarrow Erdős-Hajnal property

```
Lemma (T. 2020+)
```

If G is a dense string graph on n vertices, then there exist t and t disjoint sets X_{1}, \ldots, X_{t} such that $t \geq\left(\frac{|n|}{\left|X_{i}\right|}\right)^{c}$, and X_{i} is complete to X_{j}.

Quasi-Erdős-Hajnal property

Definition

A family of graphs \mathcal{G} has the quasi-Erdős-Hajnal property, if there exists $c=c(\mathcal{G})>0$ such that the following holds. For every $G \in \mathcal{G}$ there exist t and t disjoint subsets X_{1}, \ldots, X_{t} such that $t \geq\left(\frac{|V(G)|}{\left|X_{i}\right|}\right)^{c}$, and either every X_{i} is complete to every X_{j}, or there are no edges between any X_{i} and X_{j}.

Quasi-Erdős-Hajnal property \Leftrightarrow Erdős-Hajnal property

Lemma (T. 2020+)

If G is a dense string graph on n vertices, then there exist t and t disjoint sets X_{1}, \ldots, X_{t} such that $t \geq\left(\frac{|n|}{\left|X_{i}\right|}\right)^{c}$, and X_{i} is complete to X_{j}.

Theorem (T. 2020+)

The family of string graphs has the quasi-Erdős-Hajnal property.

Open questions

Question

What is the largest c such that every string graph on n vertices contains either a clique or an independent set of size $\Omega\left(n^{c}\right)$?

Open questions

Question

What is the largest c such that every string graph on n vertices contains either a clique or an independent set of size $\Omega\left(n^{c}\right)$?

The best known upper bound is $c<0.405$ (Kynčl 2012), which only uses segments.

Thank you for your attention!

