String graphs have the Erdős-Hajnal property

István Tomon

ETH Zurich and MIPT

A family G of graphs has the Erdős-Hajnal property, if there exists c > 0 such that every G ∈ G contains a clique or an independent set of size |V(G)|^c.

A family G of graphs has the Erdős-Hajnal property, if there exists c > 0 such that every G ∈ G contains a clique or an independent set of size |V(G)|^c.

Erdős-Hajnal conjecture (1989)

Let H be a graph and let G be the family of graphs that do not contain H as an induced subgraph. Then G has the Erdős-Hajnal property.

A family G of graphs has the Erdős-Hajnal property, if there exists c > 0 such that every G ∈ G contains a clique or an independent set of size |V(G)|^c.

Erdős-Hajnal conjecture (1989)

Let \mathcal{G} be a *hereditary* family of graphs that is not the family of all graphs. Then \mathcal{G} has the Erdős-Hajnal property.

Definition

The **intersection graph** of a family \mathcal{F} of geometric objects is the graph whose vertices correspond to the elements of \mathcal{F} , and two vertices are joined by edge if the corresponding objects have a nonempty intersection.

Definition

The **intersection graph** of a family \mathcal{F} of geometric objects is the graph whose vertices correspond to the elements of \mathcal{F} , and two vertices are joined by edge if the corresponding objects have a nonempty intersection.

Simple examples of the Erdős-Hajnal property:

Definition

The **intersection graph** of a family \mathcal{F} of geometric objects is the graph whose vertices correspond to the elements of \mathcal{F} , and two vertices are joined by edge if the corresponding objects have a nonempty intersection.

Simple examples of the Erdős-Hajnal property:

■ If *G* is the intersection graph of *n* intervals, then *G* is perfect

Definition

The **intersection graph** of a family \mathcal{F} of geometric objects is the graph whose vertices correspond to the elements of \mathcal{F} , and two vertices are joined by edge if the corresponding objects have a nonempty intersection.

Simple examples of the Erdős-Hajnal property:

■ If G is the intersection graph of n intervals, then G is perfect $\Rightarrow \max{\alpha(G), \omega(G)} \ge \sqrt{n}$.

Definition

The **intersection graph** of a family \mathcal{F} of geometric objects is the graph whose vertices correspond to the elements of \mathcal{F} , and two vertices are joined by edge if the corresponding objects have a nonempty intersection.

Simple examples of the Erdős-Hajnal property:

- If G is the intersection graph of n intervals, then G is perfect $\Rightarrow \max{\alpha(G), \omega(G)} \ge \sqrt{n}$.
- If *G* is the intersection graph of *n* axis-parallel rectangles, then

$$\max\{\alpha(G), \omega(G)\} = \Omega\left(\sqrt{\frac{n}{\log n}}\right).$$

Definition

The **intersection graph** of a family \mathcal{F} of geometric objects is the graph whose vertices correspond to the elements of \mathcal{F} , and two vertices are joined by edge if the corresponding objects have a nonempty intersection.

Simple examples of the Erdős-Hajnal property:

- If G is the intersection graph of n intervals, then G is perfect $\Rightarrow \max{\alpha(G), \omega(G)} \ge \sqrt{n}$.
- If *G* is the intersection graph of *n* axis-parallel rectangles, then

$$\max\{\alpha(G), \omega(G)\} = \Omega\left(\sqrt{\frac{n}{\log n}}\right).$$

Is it also true that $\max\{\alpha(G), \omega(G)\} = \Omega(\sqrt{n})$?

• (Larman et al. 1994) If G is the intersection graphs of n convex sets, then

 $\max\{\alpha(G), \omega(G)\} \ge n^{1/5}.$

• (Larman et al. 1994) If G is the intersection graphs of n convex sets, then

$$\max\{\alpha(G), \omega(G)\} \ge n^{1/5}.$$

Holds for *x*-monotone curves as well.

• (Larman et al. 1994) If G is the intersection graphs of n convex sets, then

$$\max\{lpha(G), \omega(G)\} \ge n^{1/5}.$$

Holds for *x*-monotone curves as well. Best known upper bound is $n^{0.405}$ (Kynčl 2012).

• (Larman et al. 1994) If G is the intersection graphs of n convex sets, then

$$\max\{lpha(G), \omega(G)\} \ge n^{1/5}.$$

Holds for x-monotone curves as well. Best known upper bound is $n^{0.405}$ (Kynčl 2012). What is the right exponent?

 (Larman et al. 1994) If G is the intersection graphs of n convex sets, then

$$\max\{lpha(G), \omega(G)\} \ge n^{1/5}.$$

Holds for x-monotone curves as well. Best known upper bound is $n^{0.405}$ (Kynčl 2012). What is the right exponent?

 (Fox, Pach, Tóth 2011) The family of *intersection graphs of curves* such that any two curves intersect at most k times has the Erdős-Hajnal property.

 (Larman et al. 1994) If G is the intersection graphs of n convex sets, then

$$\max\{lpha(G), \omega(G)\} \ge n^{1/5}.$$

Holds for x-monotone curves as well. Best known upper bound is $n^{0.405}$ (Kynčl 2012). What is the right exponent?

- (Fox, Pach, Tóth 2011) The family of *intersection graphs of curves* such that any two curves intersect at most k times has the Erdős-Hajnal property.
- (Alon et al. 2005) A family of *semi-algebraic graphs* of bounded complexity has the Erdős-Hajnal property.

Definition

A string graph is the intersection graph of curves in the plane.

Definition

A string graph is the intersection graph of curves in the plane.

Conjecture (Alon et al. 2005, Fox and Pach 2008)

The family of string graphs has the Erdős-Hajnal property.

Definition

A string graph is the intersection graph of curves in the plane.

Conjecture (Alon et al. 2005, Fox and Pach 2008)

The family of string graphs has the Erdős-Hajnal property.

 If it is true, it implies the Erdős-Hajnal property of all families of intersection graphs in the plane.

Definition

A string graph is the intersection graph of curves in the plane.

Conjecture (Alon et al. 2005, Fox and Pach 2008)

The family of string graphs has the Erdős-Hajnal property.

- If it is true, it implies the Erdős-Hajnal property of all families of intersection graphs in the plane.
- (Fox, Pach 2008) If G is a string graph with n vertices, then

$$\max\{\alpha(G), \omega(G)\} = n^{\Omega(1/\log\log n)}.$$

Definition

A string graph is the intersection graph of curves in the plane.

Conjecture (Alon et al. 2005, Fox and Pach 2008)

The family of string graphs has the Erdős-Hajnal property.

- If it is true, it implies the Erdős-Hajnal property of all families of intersection graphs in the plane.
- (Fox, Pach 2008) If G is a string graph with n vertices, then

$$\max\{\alpha(G), \omega(G)\} = n^{\Omega(1/\log\log n)}.$$

Theorem (T. 2020+)

The conjecture is true.

Definition

A family \mathcal{G} of graphs has the **strong-Erdős-Hajnal property**, if there exists c > 0 such that for every $G \in \mathcal{G}$, either G or \overline{G} contains a bi-clique of size c|V(G)|.

Definition

A family \mathcal{G} of graphs has the **strong-Erdős-Hajnal property**, if there exists c > 0 such that for every $G \in \mathcal{G}$, either G or \overline{G} contains a bi-clique of size c|V(G)|.

Strong-Erdős-Hajnal property \Rightarrow Erdős-Hajnal property

Definition

A family \mathcal{G} of graphs has the **strong-Erdős-Hajnal property**, if there exists c > 0 such that for every $G \in \mathcal{G}$, either G or \overline{G} contains a bi-clique of size c|V(G)|.

Strong-Erdős-Hajnal property \Rightarrow Erdős-Hajnal property

Definition

A family \mathcal{G} of graphs has the **strong-Erdős-Hajnal property**, if there exists c > 0 such that for every $G \in \mathcal{G}$, either G or \overline{G} contains a bi-clique of size c|V(G)|.

Strong-Erdős-Hajnal property \Rightarrow Erdős-Hajnal property

The following families of intersection graphs have the strong-Erdős-Hajnal property:

segments (Pach, Solymosi 2001)

Definition

A family \mathcal{G} of graphs has the **strong-Erdős-Hajnal property**, if there exists c > 0 such that for every $G \in \mathcal{G}$, either G or \overline{G} contains a bi-clique of size c|V(G)|.

Strong-Erdős-Hajnal property \Rightarrow Erdős-Hajnal property

- segments (Pach, Solymosi 2001)
- semi-algebraic graphs (Alon et al. 2005)

Definition

A family \mathcal{G} of graphs has the **strong-Erdős-Hajnal property**, if there exists c > 0 such that for every $G \in \mathcal{G}$, either G or \overline{G} contains a bi-clique of size c|V(G)|.

Strong-Erdős-Hajnal property \Rightarrow Erdős-Hajnal property

- segments (Pach, Solymosi 2001)
- semi-algebraic graphs (Alon et al. 2005)
- convex sets (Fox, Pach, Tóth 2010)

Definition

A family \mathcal{G} of graphs has the **strong-Erdős-Hajnal property**, if there exists c > 0 such that for every $G \in \mathcal{G}$, either G or \overline{G} contains a bi-clique of size c|V(G)|.

Strong-Erdős-Hajnal property \Rightarrow Erdős-Hajnal property

- segments (Pach, Solymosi 2001)
- semi-algebraic graphs (Alon et al. 2005)
- convex sets (Fox, Pach, Tóth 2010)
- curves, any two intersect in at most k points (Fox, Pach, Tóth 2011)

Definition

G is a **comparability graph** if there exists a partial ordering on V(G) such that $xy \in E(G)$ iff x < y or y < x. An **incomparability graph** is the complement of a comparability graph.

Definition

G is a **comparability graph** if there exists a partial ordering on V(G) such that $xy \in E(G)$ iff x < y or y < x. An **incomparability graph** is the complement of a comparability graph.

• Every incomparability graph is a string graph (Lovász 1983).

Incomparability graphs

The family of string graphs and intersection graphs of *x*-monotone curves do NOT have the strong-Erdős-Hajnal property.

Definition

G is a **comparability graph** if there exists a partial ordering on V(G) such that $xy \in E(G)$ iff x < y or y < x. An **incomparability graph** is the complement of a comparability graph.

• Every incomparability graph is a string graph (Lovász 1983).

Definition

G is a **comparability graph** if there exists a partial ordering on V(G) such that $xy \in E(G)$ iff x < y or y < x. An **incomparability graph** is the complement of a comparability graph.

- Every incomparability graph is a string graph (Lovász 1983).
- There exists an incomparability graph G on n vertices such that the largest bi-clique in G and \overline{G} has size $O(n/\log n)$ (Fox 2006).

Almost-strong-Erdős-Hajnal property

• Every dense incomparability graph contains a bi-clique of size $\Omega(n/\log n)$ (Fox 2006).

Almost-strong-Erdős-Hajnal property

- Every dense incomparability graph contains a bi-clique of size $\Omega(n/\log n)$ (Fox 2006).
- Every dense string graph contains a dense incomparability graph (Fox, Pach 2012).

Almost-strong-Erdős-Hajnal property

- Every dense incomparability graph contains a bi-clique of size $\Omega(n/\log n)$ (Fox 2006).
- Every dense string graph contains a dense incomparability graph (Fox, Pach 2012).
- Therefore, every dense string graph contains a bi-clique of size $\Omega(n/\log n)$.

- Every dense incomparability graph contains a bi-clique of size $\Omega(n/\log n)$ (Fox 2006).
- Every dense string graph contains a dense incomparability graph (Fox, Pach 2012).
- Therefore, every dense string graph contains a bi-clique of size $\Omega(n/\log n)$.

On the other hand:

- Every dense incomparability graph contains a bi-clique of size $\Omega(n/\log n)$ (Fox 2006).
- Every dense string graph contains a dense incomparability graph (Fox, Pach 2012).
- Therefore, every dense string graph contains a bi-clique of size $\Omega(n/\log n)$.

On the other hand:

- Every dense incomparability graph contains a bi-clique of size $\Omega(n/\log n)$ (Fox 2006).
- Every dense string graph contains a dense incomparability graph (Fox, Pach 2012).
- Therefore, every dense string graph contains a bi-clique of size $\Omega(n/\log n)$.

On the other hand:

- Every dense incomparability graph contains a bi-clique of size $\Omega(n/\log n)$ (Fox 2006).
- Every dense string graph contains a dense incomparability graph (Fox, Pach 2012).
- Therefore, every dense string graph contains a bi-clique of size $\Omega(n/\log n)$.

On the other hand:

- Every dense incomparability graph contains a bi-clique of size $\Omega(n/\log n)$ (Fox 2006).
- Every dense string graph contains a dense incomparability graph (Fox, Pach 2012).
- Therefore, every dense string graph contains a bi-clique of size $\Omega(n/\log n)$.

On the other hand:

- Every dense incomparability graph contains a bi-clique of size $\Omega(n/\log n)$ (Fox 2006).
- Every dense string graph contains a dense incomparability graph (Fox, Pach 2012).
- Therefore, every dense string graph contains a bi-clique of size $\Omega(n/\log n)$.

On the other hand:

- Every string graph with *m* edges contains a balanced separator of size $O(\sqrt{m})$ (Lee 2017).
- Therefore, the complement of every sparse string graph contains a linear sized bi-clique.

- Every dense incomparability graph contains a bi-clique of size $\Omega(n/\log n)$ (Fox 2006).
- Every dense string graph contains a dense incomparability graph (Fox, Pach 2012).
- Therefore, every dense string graph contains a bi-clique of size $\Omega(n/\log n)$.

On the other hand:

- Every string graph with *m* edges contains a balanced separator of size $O(\sqrt{m})$ (Lee 2017).
- Therefore, the complement of every sparse string graph contains a linear sized bi-clique.

Theorem

If G is a string graph on n vertices, then either G contains a bi-clique of size $\Omega(n/\log n)$, or the complement of G contains a bi-clique of size $\Omega(n)$.

A family of graphs \mathcal{G} has the **quasi-Erdős-Hajnal property**, if there exists $c = c(\mathcal{G}) > 0$ such that the following holds. For every $\mathcal{G} \in \mathcal{G}$ there exist t and t disjoint subsets X_1, \ldots, X_t such that $t \ge (\frac{|V(\mathcal{G})|}{|X_i|})^c$, and either every X_i is complete to every X_j , or there are no edges between any X_i and X_i .

A family of graphs \mathcal{G} has the **quasi-Erdős-Hajnal property**, if there exists $c = c(\mathcal{G}) > 0$ such that the following holds. For every $\mathcal{G} \in \mathcal{G}$ there exist t and t disjoint subsets X_1, \ldots, X_t such that $t \ge (\frac{|V(\mathcal{G})|}{|X_i|})^c$, and either every X_i is complete to every X_j , or there are no edges between any X_i and X_j .

Quasi-Erdős-Hajnal property ⇔ Erdős-Hajnal property

A family of graphs \mathcal{G} has the **quasi-Erdős-Hajnal property**, if there exists $c = c(\mathcal{G}) > 0$ such that the following holds. For every $\mathcal{G} \in \mathcal{G}$ there exist t and t disjoint subsets X_1, \ldots, X_t such that $t \ge (\frac{|V(\mathcal{G})|}{|X_i|})^c$, and either every X_i is complete to every X_j , or there are no edges between any X_i and X_j .

Quasi-Erdős-Hajnal property \Leftrightarrow Erdős-Hajnal property

Lemma (T. 2020+)

If G is a dense **incomparability graph** on n vertices, then there exist t and t disjoint sets X_1, \ldots, X_t such that $t \ge (\frac{|n|}{|X_i|})^c$, and X_i is complete to X_j .

A family of graphs \mathcal{G} has the **quasi-Erdős-Hajnal property**, if there exists $c = c(\mathcal{G}) > 0$ such that the following holds. For every $\mathcal{G} \in \mathcal{G}$ there exist t and t disjoint subsets X_1, \ldots, X_t such that $t \ge (\frac{|V(\mathcal{G})|}{|X_i|})^c$, and either every X_i is complete to every X_j , or there are no edges between any X_i and X_j .

Quasi-Erdős-Hajnal property \Leftrightarrow Erdős-Hajnal property

Lemma (T. 2020+)

If G is a dense **string graph** on n vertices, then there exist t and t disjoint sets X_1, \ldots, X_t such that $t \ge (\frac{|n|}{|X_i|})^c$, and X_i is complete to X_j .

Quasi-Erdős-Hajnal property

Definition

A family of graphs \mathcal{G} has the **quasi-Erdős-Hajnal property**, if there exists $c = c(\mathcal{G}) > 0$ such that the following holds. For every $\mathcal{G} \in \mathcal{G}$ there exist t and t disjoint subsets X_1, \ldots, X_t such that $t \ge (\frac{|V(\mathcal{G})|}{|X_i|})^c$, and either every X_i is complete to every X_j , or there are no edges between any X_i and X_j .

Quasi-Erdős-Hajnal property \Leftrightarrow Erdős-Hajnal property

Lemma (T. 2020+)

If G is a dense **string graph** on n vertices, then there exist t and t disjoint sets X_1, \ldots, X_t such that $t \ge (\frac{|n|}{|X_i|})^c$, and X_i is complete to X_j .

Theorem (T. 2020+)

The family of string graphs has the quasi-Erdős-Hajnal property.

Question

What is the largest c such that every string graph on n vertices contains either a clique or an independent set of size $\Omega(n^c)$?

Question

What is the largest c such that every string graph on n vertices contains either a clique or an independent set of size $\Omega(n^c)$?

The best known upper bound is c < 0.405 (Kynčl 2012), which only uses segments.

Thank you for your attention!