Maximal distance minimizers for a rectangle

D. Cherkashin

on joint work with A. Gordeev, G. Strukov and Y. Teplitskaya

General problem

Problem

For a given compact set $M \subset R^{2}$ and $r>0$ find a connected set Σ of minimal length such that

$$
\operatorname{dist}(\Sigma, M) \leq r
$$

or, equivalently, $M \subset \overline{B_{r}(\Sigma)}$.
It is known that:

- a solution Σ exists;
- any solution Σ has no cycles.

Main result

Theorem

Let M be a rectangle, $0<r<r_{0}(M)$. Then maximal distance minimizer is unique (up to symmetries of M). It is depicted below (the right part of the picture contains enlarged fragment of the minimizer; the labeled angle tends to $\frac{11 \pi}{12}$ with $r \rightarrow 0$).

Figure: The minimizer for rectangle M and $r<r_{0}(M)$.

Steiner problem

In fact our problem can be considered as follows: to connect r-neighborhoods of all the points from M.

The Steiner problem is that of finding a set S with minimal length such that $S \cup A$ is connected, where A is a given planar compact subset.

It is known that
(i) a solution S exists;
(ii) S has no cycles;
(iii) $S \backslash A$ consists of line segments;
(iv) a point $x \in S \backslash A$ belongs to 1 or 3 line segments;
(v) the angle between two segments adjacent to the same vertex is greater or equal to $2 \pi / 3$.

A set S^{\prime}, which corresponds to the mentioned properties and connects A (but probably is too long) is called local solution for A.

Energetic points

Definition

A point $x \in \Sigma$ is called energetic, if for all $\rho>0$ the set $\Sigma \backslash B_{\rho}(x)$ does not cover M i.e.

$$
\operatorname{dist}\left(M, \Sigma \backslash B_{\rho}(x)\right)>r .
$$

It is known that

$$
\Sigma=G_{\Sigma} \sqcup S_{\Sigma},
$$

where G_{Σ} is the set of all energetic points and S_{Σ} is Steiner part which means that Σ is a local solution of Steiner problem for G_{Σ}.

For every point $x \in G_{\Sigma}$ there exists a point $y(x) \in M$ (possibly non unique) such that $\operatorname{dist}(x, y(x))=r$ and $B_{r}(y(x)) \cap \Sigma=\emptyset$.

Strategy of the proof

First, we show that that $\Sigma \backslash B_{5 r}(V E R T I C E S)$ consists of 5 line segments.
Then we prove that the path between $\Sigma \cap \partial B_{5 r}\left(A_{1}\right)$ contain two energetic points W_{1}, W_{2} of degree 2 and one branching point V between W_{1} and W_{2}.

Strategy of the proof II

Since W_{1} and W_{2} are energetic, $\partial B_{r}\left(y\left(W_{1}\right)\right) \cap \Sigma=\partial B_{r}\left(y\left(W_{1}\right)\right) \cap \Sigma=\emptyset$, so the neighborhoods of $y\left(W_{1}\right)$ and $y\left(W_{2}\right)$ should be covered by other points (say, Q_{1} and $\left.Q_{2}\right)$. Also $\partial B_{r}\left(A_{1}\right)$ should contain a point from Σ, say, Q. Then

$$
|\Sigma \cap A N G L E| \geq \operatorname{St}\left(Q_{1}, Q_{2}, Q, V\right)+\left|Z_{2} W_{2}\right|+\left|W_{2} V\right|+\left|V W_{1}\right|+\left|W_{1} Z_{1}\right| .
$$

Then we use computer calculations to show that x, y and α should be close to the corresponding parameters of the optimal Σ.

Finally we show that for such x, y and α there is no competitor corresponds to the following properties:

- $\operatorname{St}\left(Q_{1}, Q_{2}, Q, V\right)$ has the proper direction at V;
- the whole picture is optimal up to small changing of $y\left(W_{1}\right)$ and $y\left(W_{2}\right)$.

Related results and open problems

Theorem

For every closed convex curve M with minimal radius of curvature R and for every $r<R / 5$ the set of minimizers contains only horseshoes.

Figure: Horseshoe.

This theorem partially proves the conjecture Miranda, Paolini and Stepanov: for M being the circumference $\partial B(O)$ the set of minimizers contains only horseshoes.

Related results and open problems II

Define a stadium as the boundary of R-neighborhood of a segment. The following example shows that the previous theorem does not hold without the assumption on R / r.

Figure: A horseshoe is not optimal for long enough stadium if $R<1.75 r$.

Sorry for your attention!

D. Cherkashin, Chebyshev Lab, SPbSU

