Maximal distance minimizers for a rectangle

D. Cherkashin

on joint work with A. Gordeev, G. Strukov and Y. Teplitskaya

D. Cherkashin, Chebyshev Lab, SPbSU

Combinatorics and Geometry Days II

Page 1 из 10

イロト イロト イヨト イヨト 三日

General problem

Problem

For a given compact set $M \subset R^2$ and r > 0 find a connected set Σ of minimal length such that

 $dist(\Sigma, M) \leq r$,

or, equivalently, $M \subset \overline{B_r(\Sigma)}$. It is known that

- a solution Σ exists;
- any solution Σ has no cycles.

Main result

イロト イポト イヨト イヨト

Theorem

Let M be a rectangle, $0 < r < r_0(M)$. Then maximal distance minimizer is unique (up to symmetries of M). It is depicted below (the right part of the picture contains enlarged fragment of the minimizer; the labeled angle tends to $\frac{11\pi}{12}$ with $r \to 0$).

Figure: The minimizer for rectangle M and $r < r_0(M)$.

D. Cherkashin, Chebyshev Lab, SPbSU

Combinatorics and Geometry Days II

Page 3 из 10

Steiner problem

In fact our problem can be considered as follows: to connect r-neighborhoods of all the points from M.

The Steiner problem is that of finding a set S with minimal length such that $S \cup A$ is connected, where A is a given planar compact subset.

It is known that

- (i) a solution S exists;
- (ii) S has no cycles;
- (iii) $S \setminus A$ consists of line segments;
- (iv) a point $x \in S \setminus A$ belongs to 1 or 3 line segments;
- (v) the angle between two segments adjacent to the same vertex is greater or equal to $2\pi/3.$

A set S', which corresponds to the mentioned properties and connects A (but probably is too long) is called *local solution* for A.

D. Cherkashin, Chebyshev Lab, SPbSU

Energetic points

Definition

A point $x \in \Sigma$ is called energetic, if for all $\rho > 0$ the set $\Sigma \setminus B_{\rho}(x)$ does not cover M i.e.

```
dist(M, \Sigma \setminus B_{\rho}(x)) > r.
```

It is known that

$$\Sigma = G_{\Sigma} \sqcup S_{\Sigma},$$

where G_{Σ} is the set of all energetic points and S_{Σ} is Steiner part which means that Σ is a **local** solution of Steiner problem for G_{Σ} .

For every point $x \in G_{\Sigma}$ there exists a point $y(x) \in M$ (possibly non unique) such that dist(x, y(x)) = r and $B_r(y(x)) \cap \Sigma = \emptyset$.

D. Cherkashin, Chebyshev Lab, SPbSU

Strategy of the proof

4 D K 4 B K 4 B K

First, we show that that $\Sigma \setminus B_{5r}(VERTICES)$ consists of 5 line segments.

Then we prove that the path between $\Sigma \cap \partial B_{5r}(A_1)$ contain two energetic points W_1 , W_2 of degree 2 and one branching point V between W_1 and W_2 .

Combinatorics and Geometry Days II

Page 6 из 10

Strategy of the proof II

Since W_1 and W_2 are energetic, $\partial B_r(y(W_1)) \cap \Sigma = \partial B_r(y(W_1)) \cap \Sigma = \emptyset$, so the neighborhoods of $y(W_1)$ and $y(W_2)$ should be covered by other points (say, Q_1 and Q_2). Also $\partial B_r(A_1)$ should contain a point from Σ , say, Q. Then

 $|\Sigma \cap ANGLE| \ge \mathsf{St}(Q_1, Q_2, Q, V) + |Z_2W_2| + |W_2V| + |VW_1| + |W_1Z_1|.$

Then we use computer calculations to show that x, y and α should be close to the corresponding parameters of the optimal Σ .

Finally we show that for such x, y and α there is no competitor corresponds to the following properties:

- St(Q₁, Q₂, Q, V) has the proper direction at V;
- the whole picture is optimal up to small changing of $y(W_1)$ and $y(W_2)$.

D. Cherkashin, Chebyshev Lab, SPbSU

Related results and open problems

Theorem

For every closed convex curve M with minimal radius of curvature R and for every r < R/5 the set of minimizers contains only horseshoes.

Figure: Horseshoe.

This theorem partially proves the conjecture Miranda, Paolini and Stepanov: for M being the circumference $\partial B(O)$ the set of minimizers contains only horseshoes.

D. Cherkashin, Chebyshev Lab, SPbSU

Combinatorics and Geometry Days II

A D F A D F A D F A D F

Related results and open problems II

Define a *stadium* as the boundary of *R*-neighborhood of a segment. The following example shows that the previous theorem does not hold without the assumption on R/r.

Figure: A horseshoe is not optimal for long enough stadium if R < 1.75r.

D. Cherkashin, Chebyshev Lab, SPbSU

Combinatorics and Geometry Days II

Page 9 из 10

Sorry for your attention!

D. Cherkashin, Chebyshev Lab, SPbSU

Combinatorics and Geometry Days II

Page 10 из 10

イロト イヨト イヨト イヨト 三日