A sharp threshold for
Ramsey's theorem
Wojiciech Samotij (Tel Avis University)
joint work with
Ehud Friedgut, Eden Kuperwasser. and Mathias Schacht
MIPT Big Seminar

Theorem (Ramsey 1930). If $n \geqslant n(k, r)$, then every r-colouring of $E\left(K_{n}\right)$ yields a monochromatic K_{k}.

$$
G \rightarrow(H)_{r} \equiv \forall c: E(G) \rightarrow\left\{1_{1, \ldots r}\right\} \exists i \quad c^{-1}(i) \geq H
$$

' G is Ramsey for H in r colors'
Corollary. If $n \geqslant n(H, r)$, then $K_{n} \rightarrow(H)_{r}$.
This talk. Replace K_{n} with $G_{\text {nip }}$ and study the function

$$
\mu(p)=\mu_{H, r, r}(p):=\mathbb{P}\left(G_{m p} \rightarrow(H)_{r}\right)
$$

$$
\mu(p)=\mathbb{P}\left(G_{n p} \rightarrow(H)_{r}\right)
$$

Facts. $\mu(0)=0 \quad \cdot \mu(1)=1 \cdot \mu$ is increasing \& continuous ϕ to $\left(H_{r}\right.$
$\mathrm{Kn}_{n}-(\mathrm{H}) r$
$p s p^{\prime} \Rightarrow G_{m p} \leqslant G_{m p}$
μ isapdyomid
Theorem (Bollobás-Thomason 1987): Let $p_{c}:=\mu^{-1}\left(\frac{1}{2}\right) . \forall \varepsilon>0 \exists C_{\varepsilon}$

Definition. A function $\hat{p}: \mathbb{N} \rightarrow[0,1]$ is a threshold for a graph property $P=\left(P_{n}\right)$ if

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(G_{m p} \in \mathcal{P}_{n}\right)=\left\{\begin{array}{lll}
1, & p \gg \hat{p} & p(\omega) / p h \omega \rightarrow \infty \\
0, & p \ll \hat{p} & p(\omega) / \hat{p h} \rightarrow 0
\end{array}\right.
$$

Theorem (Bollobás-Thomason 1987). Every monotone and nontrivial graph property has a threshold.

Question. The property $G \rightarrow(H)_{r}$ is monotone \& nontrivial. Where is the threshold?

Theorem (Rödl-Rucinski 1995). For all H and $r \geqslant 2$, there are $C_{0}, c_{1}>0$ such that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(G_{m i p} \rightarrow(H)_{r}\right)= \begin{cases}1, & p \geqslant c_{1} n^{-\frac{1}{m_{2}(H)}} \\ 0, & p<c_{0} n^{-\frac{1}{m(m)}}\end{cases}
$$

where $m_{2}(H):=\max \left\{\frac{e_{F}-1}{v_{k}-2}: F \leqslant H, c_{F} \geq 2\right\} \quad$ (2-density). * unless H is a forest of stars or $(H=\cdots \& r=2)$ (eeg. $\AA 1)$
$H=K_{3}, r=2$: Frankl-Rödl (1986) \& tuczak-Rucinski-Voigt (1992)

Intuition behind the location of the threshold:
If $p=C n^{-\frac{1}{m_{2}(H)}}$ \& $F \leqslant H$ satisfies $m_{2}(H)=\frac{e_{F}-1}{V_{F}-2}$, then $\mathbb{E}\left[\right.$ \#copies of $F \leq G_{\text {mp }}$ containing e $\left.\mid e \in G_{\text {mp }}\right]=\Theta\left(c^{e_{F-1}}\right)$.
$N(e, F)$

0 -statement: If $N(e, F) \leq r-1$ for some $e \in G_{m p}$, then one can extend any F-free r-colouring to e.

1-statement: See Nenadov-Steger (2016).

Definition. A function $\hat{p}: \mathbb{N} \rightarrow[0,1]$ is a sharp threshold for a graph property $P=\left(\rho_{n}\right)$ if, for every $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(G_{\text {mp }} \in \mathcal{P}_{n}\right)= \begin{cases}1, & p \geqslant(1+\varepsilon) \hat{p} \\ 0, & p \leqslant(1-\varepsilon) \hat{p}\end{cases}
$$

Examples:

- sharp th: connectivity, Hamiltonicity $\hat{p}=\log n / n$
- coarse (non-sharp) th: $\geq K_{3}$

$$
\hat{p}=1 / n
$$

$$
\mathbb{P}\left(G_{\text {ma cm }} \not K_{3}\right)=\exp \left(-c^{3} / 6+d(1)\right)
$$

Friedgut: sharp th \sim 'global' ppttes \& coarse th \sim 'local' ppties?

Theorem (Friedgut 1999). If a graph pity has a coarse th, then it correlates with a 'local' ppty.
Question: Is the pity $G_{m . p} \rightarrow(H)_{r}$ 'local' or 'global'?
Theorem (Friedgut-Krivelevich 2000) $G_{m p} \rightarrow\left(K_{1, k}\right)_{r}$ and $G_{m p} \rightarrow(\ldots)_{2}$ have coarse th; for every other tree $T \& r \geqslant 2, G_{\text {mp }} \rightarrow(T)_{r}$ has a sharp $t h$.

$$
\begin{equation*}
K_{1,(k-1) r+1} \rightarrow\left(K_{1, k}\right)_{r} \quad \& \tag{H}
\end{equation*}
$$

\&both these graphs appear at below $\Theta\left(n^{-\frac{1}{m_{m}(m)}}\right)=\Theta\left(n^{-1}\right)$.

Theorem (Friedgut-Rödl-Rucinski-Tetali 2006). $G_{m i p} \rightarrow\left(K_{3}\right)_{2}$ has a sharp th. (65 pages)

Conjecture (FRRT). G ip $\rightarrow(H)_{r}$ has a sharp th if $H=$ cycle.
Theorem (Schacht-Schulenburg 2018). $G_{m p} \rightarrow(H)_{2}$ has a sharp th when H is strictly 2-balanced \& 'nearly bipartite'.
$m_{2}\left(H<m_{2}(H)\right.$ for Fast $\quad X(H i e)=2$ for some ecHt
Friedgut-Han-Person - Schacht $(2015)\left(\mathbb{Z}_{N}\right)_{p} \rightarrow(k-A P)_{2}(19 p p$.
All these results assume $r=2$.

Theorem (Friedgut-Kuperwasser-S. - Schacht 2020+).
If $H \in\left\{\right.$ clique, cycle,,\ldots, then $G_{a p} \rightarrow(H)_{r}$ has a sharp th for all $r \geqslant 2$. strictly 2 -balanced \& two extra pities

The remainder of this talk: proof outline for $H=K_{3} \& r=3$.

Let $\mu(p)=\mathbb{P}\left(G_{m p} \rightarrow\left(K_{3}\right)_{3}\right)$ and assume that th is coarse.

$$
\begin{aligned}
\Rightarrow \exists I & \left.\leq\left[c_{0} c^{-1 / 2}, c_{1} n^{-1 / 2}\right] \quad|I|=\delta\left(n^{-1 / 2}\right) \wedge \forall p \in I \quad \Omega(1) \leq \mu \mid p\right) \leq 1-\Omega(l \mid) \\
& \Rightarrow \exists p \in I \quad \mu^{\prime}(p)=O\left(p^{-1}\right)
\end{aligned}
$$

Thu (Friedgut 1999): $\exists \delta>0$ \& graph B with $O(1)$ edges s.t.:

- $\mathbb{P}\left(G_{m p} \cup \varphi(B) \rightarrow\left(K_{3}\right)_{3}\right) \geqslant \mu(p)+\delta$
${ }^{r} a$ a uniform random sequin. frae) copy of B in K_{n}
- $\mathbb{P}\left(B \leq G_{\text {mp }}\right)=\Omega(1)$ old one could tare $B=K_{m} \rightarrow\left(K_{3}\right)_{3}$

Corollary. $\exists \varepsilon>O$ \& graph B with $O(1)$ edges st. for $Z \sim G_{\text {nip }}$, with probability $\geqslant \varepsilon$:
(a) $\mathbb{P}\left(Z \cup G_{n, \varepsilon_{P}} \rightarrow\left(K_{3}\right)_{3} \mid Z\right) \leqslant 1 / 2$,
(b) $\mathbb{P}\left(Z \cup \varphi(B) \rightarrow\left(K_{3}\right)_{3} \mid Z\right) \geqslant \varepsilon$.
random copy of B in X_{n}
We fix one Z satisfying (a)\&(b); by , we may ask Z avoid any 'bad' event B s.t. $\mathbb{P}\left(G_{m p} \in B\right)<\varepsilon$.

By (a), Z to $\left(K_{3}\right)_{3}$, so \exists proper colourings $Z \rightarrow\{R, G, B\}$.

Fix some proper colouring $Z \rightarrow\{R, G, B\}$.

R is unavailable at e

R, B are unavailable at e \Downarrow G is forced at e

Observation. If a triangle T is forced to some colour, then the colouring cannot be extended to ZUT.

Proof outline:
(1) Show that every proper colouring of Z :
(E) forces $\Omega\left(n^{2}\right)$ edges to some colour,
(1) forces $\Omega\left(n^{3}\right)$ triangles to some colour.
(2) Bound $\mathbb{P}\left(G_{n}, \varepsilon_{p}\right.$ avoids all forced $\left.K_{3} s\right)$ from above for every fixed proper colouring of Z.
(3) Union bound over all colourings:

$$
1 / 2 \leqslant \mathbb{P}\left(Z \cup G_{\text {n, \&p }} \rightarrow\left(K_{3}\right)_{3}\right) \leqslant \mathbb{P}\binom{G_{n, \text { ip }} \text { avoids all forced } K_{3 s}}{\text { for some proper colouring }}=0(1)
$$

(E) Every proper colouring of Z forces $\Omega\left(n^{2}\right)$ edges to some colour Suppose only o($\left.n^{2}\right)$ edges are forced. Then

$$
\mathbb{P}(\varphi(B) \text { contains a forced edge }) \leqslant e(B) \cdot o(1)=o(1) \text {. }
$$

Cuniformy random copy of B in K_{n}
As K_{3} is strictly 2-balanced \& $e(Z)=O\left(n^{3 / 2}\right)$

By (6), $\exists \varphi\left\{\begin{array}{l}\cdot Z \cup \varphi(B) \rightarrow\left(K_{3}\right)_{3} \\ \cdot \\ \cdot \text { each } e \in \varphi(B) \text { has } \geqslant 2 \text { available colours }\end{array}\right.$
(i) $Z \cup \varphi(B) \rightarrow\left(K_{3}\right)_{3}$
od ${ }^{2}$) edges \Rightarrow (ii) each $e \in \varphi(B)$ has $\geqslant 2$ available colours forced to a col.
(iii) $K_{3} s$ in $\mathrm{Zu} \mathrm{\varphi(B)}$:

Key property \#1: If $\mathbb{P}\left(B \leq G_{m, p}\right)=\Omega(1)$ (equiv. $m(B) \leq m_{2}\left(K_{3}\right)$), then B is 2 -choosable w.r.t. K_{3} s.
$K P \# \mid \stackrel{(i i)}{\Rightarrow}$ proper colouring of $\varphi(B)$ using available colours
$\stackrel{(i i i)}{\Rightarrow}$ the proper colouring of Z can be extended to $\varphi(B)$

$$
\Rightarrow Z \cup \varphi(B) \nrightarrow\left(K_{3}\right)_{3}
$$

(T) Every proper colouring of Z forces $\Omega\left(n^{3}\right) K_{3} 5$ to some colour Even though $\Omega\left(n^{2}\right)$ edges are forced to some colour, they could form a K_{3}-free graph...
Key property \#2: If a partial $\{R, B\}$-colouring of K_{n} contains $\Omega\left(n^{4}\right)$ many X, then it must also contain $\Omega\left(n^{q}\right)$ many

$$
K P \# 2 \& \oplus \underset{\text { second moment }}{\text { container lemma }}(T
$$

(2) Bound $\mathbb{P}\left(G_{m, s p}\right.$ avoids all forced $\left.K_{3} s\right)$

Jonson's inequality $\Rightarrow \mathbb{P}(\ldots) \leqslant \exp \left(-c_{\varepsilon} n^{2} p\right)$
(3) Union bound over all colourings

$$
1 / 2 \leq \mathbb{P}\left(Z \cup G_{n, \varepsilon_{p}} \nrightarrow\left(K_{3}\right)_{3}\right) \leq \# \text { colourings of } Z \times \exp \left(-c_{\varepsilon} n^{2} p\right)
$$

\#colourings of $Z \leq 3^{e(z)} \approx 3^{n^{2} p / 2} \ldots$ hmm...

$$
\mathbb{P}(\ldots) \geqslant \mathbb{P}\left(G_{n, \varepsilon p}=\varnothing\right) \approx \exp \left(-\varepsilon n^{2} p\right) \ldots \text { oops ... }
$$

The union bound is too large !!!

Lemma. ヨ family C of $\exp \left(o\left(n^{2} p\right)\right)$ partial colourings of Z :
(i) every proper col of Z extends some $c \in C$,
(ii) every $c \in C$ forces $\Omega\left(n^{2}\right)$ edges to some colour (and therefore also $\Omega\left(n^{3}\right)$ triangles).

Improved union bound:

$$
1 / 2 \leq \mathbb{P}\left(Z \cup G_{n, \varepsilon_{p}} \nrightarrow\left(K_{3}\right)_{3}\right) \leq|C| \times \exp \left(-c_{\varepsilon} n^{2} p\right)=o(1) .
$$

How to prove the lemma? Containers for a hypergraph on $Z \times\{R, G, B\}$ arising from $\varphi(B)$ st. $Z \cup \varphi(B) \rightarrow\left(K_{3}\right)_{3}$.

Sufficient conditions for th $\left(G_{n, p} \rightarrow(H)_{r}\right)$ being sharp:
KP\#O: H is strictly 2 -balanced.
$K P \# 1$: If $m(B) \leqslant m_{2}(H)$, then B is 2 -choosable w.r.t. H from lists $\leq\{1, \ldots, r\}$. $R R \Rightarrow K P \# \mid$ for $r=2$, all H
$K P \# 2$: For every partial $\{1, \ldots, r-1\}$-col of K_{n} :

'easy' when H nearly bis. or H : clique

$$
\# \geqslant \Omega\left(n^{2+(-1))\left(v_{H}-2\right)}\right) \Rightarrow \# \geqslant \Omega\left(n^{\left.v_{H}+(-r)\right)\left(v_{H}-2\right)}\right)
$$

