A strong Ramanujan theorem and the Riemann Hypothesis

Oleg R. Musin

The sum of divisors function $\sigma(n)$

The function $\sigma(n)=\sum_{d \mid n} d$ is the sum of divisors function.

$$
\begin{gathered}
\sigma(1)=1 \\
\sigma(2)=1+2=3, \sigma(3)=1+3=4, \sigma(4)=1+2+4=7 \\
\sigma(6)=1+2+3+6=12, \sigma(7)=1+7=8, \sigma(8)=15
\end{gathered}
$$

$1,3,4,7,6,12,8,15,13,18,12,28,14,24,24,31,18,39,20$, $42,32,36,24,60,31,42,40,56,30,72,32,63,48,54,48,91$, $38,60,56,90,42,96,44,84,78,72,48,124,57,93,72,98,54$, $120,72,120,80,90,60,168,62,96,104,127,84,144,68,126$, 96, 144

The sum of divisors function $\sigma(n)$

$$
\begin{aligned}
& \sigma(n)=n+1 \text { if } n=2,3,5,7,11,13,17,19, \ldots \\
& \sigma(n)=n+1 \text { iff } n \text { is prime. }
\end{aligned}
$$

Euler's constant $\gamma \approx 0.5772$

Euler's (or Euler-Mascheroni's) constant $\gamma=0.5772156649015328606065120900824024310421593359399 \ldots$

$$
\gamma:=\lim _{n \rightarrow \infty}\left(H_{n}-\ln n\right), \quad H_{n}:=1+1 / 2+\ldots+1 / n .
$$

$$
\gamma=-\int_{0}^{\infty} e^{-x} \ln x d x
$$

Grönwall theorem (1913)

Theorem (Grönwall)

$$
\begin{gathered}
\limsup _{n \rightarrow \infty} \frac{\sigma(n)}{n \log \log n}=e^{\gamma} \\
G(n):=\frac{\sigma(n)}{n \log \log n}, n \geq 2 \\
\limsup _{n \rightarrow \infty} G(n)=e^{\gamma},
\end{gathered}
$$

Robin theorem

Robin (1984) showed that the Riemann hypothesis (RH) is true iff

$$
\begin{equation*}
\sigma(n)<e^{\gamma} n \log \log n \text { for all } n>5040 \tag{R}
\end{equation*}
$$

or equivalently

$$
G(n)<e^{\gamma} \forall n>5040
$$

Briggs' computation of the colossally abundant numbers implies (R) for $n<10^{\left(10^{10}\right)}$.

According to Morrill and Platt (2018), (R) holds for all integers $5040<n<10^{\left(10^{13}\right)}$.

Lagarias theorem

J. C. Lagarias. An Elementary Problem Equivalent to the Riemann Hypothesis. Am. Math. Monthly, 109 (2002), 534-543.

Theorem (Lagarias)

The RH is true iff

$$
\begin{equation*}
L(n):=H_{n}+\exp \left(H_{n}\right) \log \left(H_{n}\right)-\sigma(n)>0 \text { for all } n>1 \tag{L}
\end{equation*}
$$

Recall

$$
H_{n}:=1+1 / 2+\ldots+1 / n .
$$

SA and CA numbers

The study of numbers with $\sigma(n)$ large was initiated by Ramanujan.
A positive integer n is called superabundant (SA) if

$$
\frac{\sigma(k)}{k}<\frac{\sigma(n)}{n} \text { for all integer } k \in[1, n-1] .
$$

Colossally abundant numbers (CA) are those numbers n for which there is $\varepsilon>0$ such that

$$
\frac{\sigma(k)}{k^{1+\varepsilon}} \leq \frac{\sigma(n)}{n^{1+\varepsilon}} \text { for all } k>1
$$

CA numbers

$$
\begin{gathered}
F(x, k):=\frac{\log \left(1+1 /\left(x+\ldots+x^{k}\right)\right)}{\log x}, \\
E_{p}:=\{F(p, k) \mid k \geq 1\}, \quad p \text { is a prime } \\
E:=\bigcup_{p} E_{p}=\left\{\varepsilon_{1}, \varepsilon_{2}, \ldots\right\}=\left\{\log _{2}\left(\frac{3}{2}\right), \log _{3}\left(\frac{4}{3}\right), \log _{2}\left(\frac{7}{6}\right), \ldots\right\} .
\end{gathered}
$$

CA numbers: Alaoglu-Erdős theorem

Alaoglu and Erdős (1944) showed that if ε is not critical, i.e. $\varepsilon \notin E$, then $\sigma(k) / k^{1+\varepsilon}$ has a unique maximum attained at the number n_{ε}. Moreover, if ε satisfies $\varepsilon_{i}>\varepsilon>\varepsilon_{i+1}, i=1,2, \ldots$, then n_{ε} is constant on the interval $\left(\varepsilon_{i+1}, \varepsilon_{i}\right)$.

$$
n_{\varepsilon}=\prod_{p \in \mathbb{P}} p^{a_{\varepsilon}(p)}, \quad a_{\varepsilon}(p)=\left\lfloor\frac{\log \left(p^{1+\varepsilon}-1\right)-\log \left(p^{\varepsilon}-1\right)}{\log p}\right\rfloor-1
$$

The first 14 CA numbers n_{1}, \ldots, n_{14} are $2,6,12,60,120,360,2520,5040,55440,720720,1441440,4324320$, 21621600, 367567200.

Ramanujan inequalities

Ramanujan $(1915,1997)$ proved that if n is a CA number (he called CA numbers as generalized superior highly composite) then under the RH the following inequalities hold

$$
\begin{gather*}
\limsup _{n \rightarrow \infty}\left(\frac{\sigma(n)}{n}-e^{\gamma} \log \log n\right) \sqrt{\log n} \leq-c_{1} \tag{1}\\
c_{1}:=e^{\gamma}(2 \sqrt{2}-4-\gamma+\log 4 \pi) \approx 1.3932
\end{gather*}
$$

$\liminf _{n \rightarrow \infty}\left(\frac{\sigma(n)}{n}-e^{\gamma} \log \log n\right) \sqrt{\log n} \geq-c_{2}$,

$$
\begin{equation*}
c_{2}:=e^{\gamma}(2 \sqrt{2}+\gamma-\log 4 \pi) \approx 1.5578 \tag{2}
\end{equation*}
$$

Ramanujan's inequalities

$$
T(n):=\left(e^{\gamma} \log \log n-\frac{\sigma(n)}{n}\right) \sqrt{\log n}
$$

It is easy to see that Ramanujan's inequalities (1) and (2) yield the following fact:

If the RH is true, then there is i_{0} such that for all CA numbers $n_{i}, i \geq i_{0}$, we have

$$
\begin{equation*}
1.393<T\left(n_{i}\right)<1.558 \tag{3}
\end{equation*}
$$

The Strong Ramanujan Theorem (SRT)

Note that (2) does not hold for all integers. If p_{i} is prime, then $\sigma\left(p_{i}\right)=p_{i}+1$. Therefore, $\lim \sup T\left(p_{i}\right)=\infty$.
$i \rightarrow \infty$
However, (1) holds for all numbers.
Theorem (The Strong Ramanujan Theorem; M., 2019)
If the RH is true, then

$$
\liminf _{n \rightarrow \infty} T(n) \geq c_{1}>1.393
$$

Open problem: Can Ramanujan's constant c_{1} be improved?

Ramanujan Theorem

SRT implies the following inequality:
If the RH is true, then there is n_{0} such that for all $n>n_{0}$ we have

$$
\begin{equation*}
\sigma(n)+\frac{1.393 n}{\sqrt{\log n}}<e^{\gamma} n \log \log n \tag{4}
\end{equation*}
$$

which is stronger than Ramanujan's theorem:
If the RH is true, then there is n_{0} such that for all $n>n_{0}$ we have

$$
\begin{equation*}
\sigma(n)<e^{\gamma} n \log \log n \tag{5}
\end{equation*}
$$

Proof of the Strong Ramanujan Theorem

(1) For every non-CA $n>1$ there is $i>1$ such that $n_{i-1}<n<n_{i}$, where n_{i-1} and n_{i} are two consecutive CA numbers. Robin (1984) showed that $G(n) \leq \max \left(G\left(n_{i-1}\right), G\left(n_{i}\right)\right)$.
(2) Let $P(n)$ denote the largest prime factor of n. Alaoglu \& Erdős proved that $P(n) \sim \log n$ for all SA (in particular for CA) numbers.
(3) The quotient of two consecutive CA numbers is either a prime or the product of two distinct primes [Alaoglu and Erdős].

Lower Convex Envelope

Let $D=\left\{x_{n}\right\}$ be an increasing sequence and $f: D \rightarrow \mathbb{R}$. Denote by $\Omega(f)$ the set of all convex functions $h: D \rightarrow \mathbb{R}$ such that $h(x) \leq f(x)$ for all $x \in D$. The lower convex envelope \breve{f} of f :

$$
\breve{f}(x):=\sup \{h(x) \mid h \in \Omega(f)\} .
$$

Another definition of CA numbers

For fixed $\varepsilon>0$, CA numbers n may be viewed as maximizers of

$$
\begin{gathered}
Q(k)-\varepsilon \log k=\log \left(\sigma(k) / k^{1+\varepsilon}\right), \quad Q(k):=\log \sigma(k)-\log k . \\
x_{k}:=\log k, \quad A\left(x_{k}\right):=x_{k}-\log \sigma(k)=-Q(k), \\
A: D \rightarrow \mathbb{R}, \quad D:=\left\{x_{k}\right\}, \quad k \geq 2
\end{gathered}
$$

Note that n is CA if $\left(x_{n}, A\left(x_{n}\right)\right)$ is a vertex of the lower convex envelope \breve{A}.

HA numbers

$$
\mathrm{R}_{\mathrm{s}}(\mathrm{n}):=\left(\mathrm{e}^{\gamma} \mathrm{n} \log \log \mathrm{n}-\sigma(\mathrm{n})\right)(\log \mathrm{n})^{\mathrm{s}}, \quad \mathrm{n} \geq 2 .
$$

Now we define Highest Abundant (HA) numbers. We say that $n \in D \subset \mathbb{N}$ is HA with respect to R_{s} and write $n \in \mathrm{HA}_{\mathrm{s}}(\mathrm{D})$ if for some real a

$$
\mathrm{R}_{\mathrm{s}}(\mathrm{k})-\mathrm{ak}
$$

attains its minimum on D at n. For $D=\{n \in \mathbb{N} \mid n \geq 5040\}$ we denote $\mathrm{HA}_{\mathrm{s}}(\mathrm{D})$ by HA_{s}.

Equivalently, $n \in \operatorname{HA}_{\mathrm{s}}(\mathrm{D})$ if $\left(n, \mathrm{R}_{\mathrm{s}}(n)\right)$ is a vertex of the convex envelope $\breve{\mathrm{R}}_{s}$ on D.

The convex envelope of R_{1} on $D=\{2, \ldots, 120\}$

$\mathrm{HA}_{1}(\mathrm{D})$ with $D=\left\{2, \ldots, n_{13}=21621600\right\}$.

If $D=\left\{2,3, \ldots, n_{13}=21621600\right\}$, then
$\mathrm{HA}_{1}(\mathrm{D})=\{2,6,12,60,120,2520,5040,55440,720720,1441440$, $2162160,4324320,21621600\}=\left\{m_{0}, \ldots, m_{12}\right\}$.

In this list of 13 numbers m_{0}, \ldots, m_{12} there are 12 out of the first 13 CA numbers except $n_{6}=360$. However, m_{10} is an SA number $2162160=2^{4} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 13$ but is not CA.
R_{1} on $\mathrm{HA}_{1}(\mathrm{D})$ has a minimum at $m_{5}=2520$ and is positive for $m_{i}>m_{6}=5040$.

Theorem 2

Theorem

(i) If the RH is true and $s>1 / 2$, then there are infinitely many HA numbers with respect to R_{s}. If the $R H$ is false, then HA_{s} is empty. (ii) Let $s \leq 0$. If the RH is false, then there are infinitely many $H A$ numbers with respect to R_{s}. If the $R H$ is true, then $H A_{s}=\{5040\}$.

Proof of Theorem 2

I. The SRT and Ramanujan inequality (2) yield

Corollary

If the RH is true, then for every $\varepsilon>0$ there is n_{0} such that a set

$$
M(\varepsilon):=\left\{n>n_{0} \mid T(n)<c_{2}+\varepsilon\right\}
$$

is infinite and for all $n \in M(\varepsilon)$ we have $T(n)>c_{1}-\varepsilon$.
II. From Robin's result follow that if the RH is false there exist constants $b \in(0,1 / 2)$ and $c>0$ such that there are infinitely many $n \in \mathbb{N}$ with

$$
-\frac{0.6482 n}{\log \log n}<\mathrm{R}_{0}(\mathrm{n})<-\frac{\mathrm{cn} \log \log n}{(\log n)^{b}} .
$$

Open problems

Suppose that the RH is true.
(1) Can Ramanujan's constant c_{1} be improved?
(2) Let $s=1 / 2$. Is HA_{s} infinite?
(3) Let \bar{c}_{1} be the optimal (Ramanujan's) constant. Let $W(n):=T(n)-\bar{c}_{1}$. Find $\tau(n)$ and constants b_{1}, b_{2} such that

$$
\liminf _{n \rightarrow \infty} W(n) \tau(n) \geq b_{1}
$$

and there are infinitely many n with $W(n) \tau(n) \leq b_{2}$.
(!) Suppose that the RH is false. Improve Robin's inequalities.

Thank you

