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The sum of divisors function σ(n)

The function σ(n) =
∑

d |n d is the sum of divisors function.

σ(1) = 1

σ(2) = 1 + 2 = 3, σ(3) = 1 + 3 = 4, σ(4) = 1 + 2 + 4 = 7

σ(6) = 1 + 2 + 3 + 6 = 12, σ(7) = 1 + 7 = 8, σ(8) = 15

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20,
42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91,
38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54,
120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144, 68, 126,
96, 144
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The sum of divisors function σ(n)

σ(n) = n + 1 if n = 2, 3, 5, 7, 11, 13, 17, 19, ...

σ(n) = n + 1 iff n is prime.
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Euler’s constant γ ≈ 0.5772

Euler’s (or Euler–Mascheroni’s) constant
γ = 0.5772156649015328606065120900824024310421593359399...

γ := lim
n→∞

(Hn − ln n), Hn := 1 + 1/2 + ...+ 1/n.

γ = −
∞∫
0

e−x ln x dx
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Grönwall theorem (1913)

Theorem (Grönwall)

lim sup
n→∞

σ(n)

n log log n
= eγ

G (n) :=
σ(n)

n log log n
, n ≥ 2

lim sup
n→∞

G (n) = eγ ,
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Robin theorem

Robin (1984) showed that the Riemann hypothesis (RH) is true iff

σ(n) < eγn log log n for all n > 5040 (R)

or equivalently
G (n) < eγ ∀n > 5040.

Briggs’ computation of the colossally abundant numbers implies
(R) for n < 10(1010).

According to Morrill and Platt (2018), (R) holds for all integers
5040 < n < 10(1013).
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Lagarias theorem

J. C. Lagarias. An Elementary Problem Equivalent to the Riemann
Hypothesis. Am. Math. Monthly, 109 (2002), 534–543.

Theorem (Lagarias)

The RH is true iff

L(n) := Hn + exp(Hn) log(Hn)− σ(n) > 0 for all n > 1. (L)

Recall
Hn := 1 + 1/2 + ...+ 1/n.
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SA and CA numbers

The study of numbers with σ(n) large was initiated by Ramanujan.

A positive integer n is called superabundant (SA) if

σ(k)

k
<
σ(n)

n
for all integer k ∈ [1, n − 1].

Colossally abundant numbers (CA) are those numbers n for which
there is ε > 0 such that

σ(k)

k1+ε ≤
σ(n)

n1+ε for all k > 1.
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CA numbers

F (x , k) :=
log(1 + 1/(x + ...+ xk))

log x
,

Ep := {F (p, k) | k ≥ 1}, p is a prime,

E :=
⋃
p

Ep = {ε1, ε2, ...} =

{
log2

(
3
2

)
, log3

(
4
3

)
, log2

(
7
6

)
, ...

}
.
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CA numbers: Alaoglu–Erdős theorem

Alaoglu and Erdős (1944) showed that if ε is not critical, i.e.
ε /∈ E , then σ(k)/k1+ε has a unique maximum attained at the
number nε. Moreover, if ε satisfies εi > ε > εi+1, i = 1, 2, ..., then
nε is constant on the interval (εi+1, εi ).

nε =
∏
p∈P

paε(p), aε(p) =

⌊
log(p1+ε − 1)− log(pε − 1)

log p

⌋
− 1

The first 14 CA numbers n1, ..., n14 are
2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320,
21621600, 367567200.
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Ramanujan inequalities

Ramanujan (1915, 1997) proved that if n is a CA number (he
called CA numbers as generalized superior highly composite) then
under the RH the following inequalities hold

lim sup
n→∞

(
σ(n)

n
− eγ log log n

)√
log n ≤ −c1, (1)

c1 := eγ(2
√
2− 4− γ + log 4π) ≈ 1.3932

lim inf
n→∞

(
σ(n)

n
− eγ log log n

)√
log n ≥ −c2, (2)

c2 := eγ(2
√
2 + γ − log 4π) ≈ 1.5578.
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Ramanujan’s inequalities

T (n) :=

(
eγ log log n − σ(n)

n

)√
log n.

It is easy to see that Ramanujan’s inequalities (1) and (2) yield the
following fact:

If the RH is true, then there is i0 such that for all CA numbers
ni , i ≥ i0, we have

1.393 < T (ni ) < 1.558 (3)
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The Strong Ramanujan Theorem (SRT)

Note that (2) does not hold for all integers. If pi is prime, then
σ(pi ) = pi + 1. Therefore, lim sup

i→∞
T (pi ) =∞.

However, (1) holds for all numbers.

Theorem (The Strong Ramanujan Theorem; M., 2019)

If the RH is true, then

lim inf
n→∞

T (n) ≥ c1 > 1.393.

Open problem: Can Ramanujan’s constant c1 be improved?
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Ramanujan Theorem

SRT implies the following inequality:

If the RH is true, then there is n0 such that for all n > n0 we have

σ(n) +
1.393 n√

log n
< eγn log log n (4)

which is stronger than Ramanujan’s theorem:

If the RH is true, then there is n0 such that for all n > n0 we have

σ(n) < eγn log log n. (5)
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Proof of the Strong Ramanujan Theorem

(1) For every non–CA n > 1 there is i > 1 such that
ni−1 < n < ni , where ni−1 and ni are two consecutive CA numbers.
Robin (1984) showed that G (n) ≤ max(G (ni−1),G (ni )).

(2) Let P(n) denote the largest prime factor of n. Alaoglu & Erdős
proved that P(n) ∼ log n for all SA (in particular for CA) numbers.

(3) The quotient of two consecutive CA numbers is either a prime
or the product of two distinct primes [Alaoglu and Erdős].
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Lower Convex Envelope

Let D = {xn} be an increasing sequence and f : D → R. Denote
by Ω(f ) the set of all convex functions h : D → R such that
h(x) ≤ f (x) for all x ∈ D. The lower convex envelope f̆ of f :

f̆ (x) := sup{h(x) | h ∈ Ω(f )}.
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Another definition of CA numbers

For fixed ε > 0, CA numbers n may be viewed as maximizers of

Q(k)− ε log k = log(σ(k)/k1+ε), Q(k) := log σ(k)− log k.

xk := log k, A(xk) := xk − log σ(k) = −Q(k),

A : D → R, D := {xk}, k ≥ 2

Note that n is CA if (xn,A(xn)) is a vertex of the lower convex
envelope Ă.
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HA numbers

Rs(n) := (eγn log log n− σ(n)) (log n)s, n ≥ 2.

Now we define Highest Abundant (HA) numbers. We say that
n ∈ D ⊂ N is HA with respect to Rs and write n ∈ HAs(D) if for
some real a

Rs(k)− ak

attains its minimum on D at n. For D = {n ∈ N | n ≥ 5040} we
denote HAs(D) by HAs.

Equivalently, n ∈ HAs(D) if (n,Rs(n)) is a vertex of the convex
envelope R̆s on D.
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The convex envelope of R1 on D = {2, ..., 120}
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HA1(D) with D = {2, ..., n13 = 21621600}.

If D = {2, 3, ..., n13 = 21621600}, then

HA1(D) = {2, 6, 12, 60, 120, 2520, 5040, 55440, 720720, 1441440,
2162160, 4324320, 21621600} = {m0, ...,m12}.

In this list of 13 numbers m0, ...,m12 there are 12 out of the first
13 CA numbers except n6 = 360. However, m10 is an SA number
2162160 = 24 · 33 · 5 · 7 · 11 · 13 but is not CA.
R1 on HA1(D) has a minimum at m5 = 2520 and is positive for
mi > m6 = 5040.
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Theorem 2

Theorem

(i) If the RH is true and s > 1/2, then there are infinitely many HA
numbers with respect to Rs . If the RH is false, then HAs is empty.

(ii) Let s ≤ 0. If the RH is false, then there are infinitely many HA
numbers with respect to Rs . If the RH is true, then HAs = {5040}.
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Proof of Theorem 2

I. The SRT and Ramanujan inequality (2) yield

Corollary

If the RH is true, then for every ε > 0 there is n0 such that a set

M(ε) := {n > n0 |T (n) < c2 + ε}

is infinite and for all n ∈ M(ε) we have T (n) > c1 − ε.

II. From Robin’s result follow that if the RH is false there exist
constants b ∈ (0, 1/2) and c > 0 such that there are infinitely
many n ∈ N with

−0.6482 n
log log n

< R0(n) < −c n log log n
(log n)b .
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Open problems

Suppose that the RH is true.

(1) Can Ramanujan’s constant c1 be improved?

(2) Let s = 1/2. Is HAs infinite?

(3) Let c̄1 be the optimal (Ramanujan’s) constant. Let
W (n) := T (n)− c̄1. Find τ(n) and constants b1, b2 such that

lim inf
n→∞

W (n)τ(n) ≥ b1

and there are infinitely many n with W (n)τ(n) ≤ b2.

(!) Suppose that the RH is false. Improve Robin’s inequalities.
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Thank you


