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Contact graphs

Let X be a finite subset of a metric space M. Here we consider
M = S2. Denote

ψ(X ) := min
x ,y∈X

{dist(x , y)}, where x 6= y .

The contact graph CG(X ) is the graph with vertices in X and
edges (x , y), x , y ∈ X such that

dist(x , y) = ψ(X )
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Shift of a single vertex

Let X be a finite set in M. Let x ∈ X be a vertex of CG(X ) We
say that there exists a shift of x if x can be slightly shifted to x ′

such that dist(x ′,X \ {x}) > dist(x ,X \ {x}).
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Irreducible contact graph

We say that the graph CG(X ) is irreducible [Schütte - van der
Waerden, Fejes Tóth] if there are no shift of vertices.
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Properties of spherical irreducible contact graphs

Theorem

Let X ⊂ S2 with |X | = N is such that the graph CG(X ) is
irreducible. Then G := CG(X ) satisfies the following properties:

1 G is a planar graph;
2 Any vertex of G is of degree 0, 3, 4, or 5;
3 If N > 10 and G contains an isolated vertex v , then v lies in a

face with m ≥ 6 vertices. Moreover, a hexagonal face of G
cannot contain two or more isolated vertices.
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D–flip and D–irreducible contact graphs

Danzer [1963] defined the following flip. Let x , y , z be vertices of
CG(X ) with dist(x , y) = dist(x , z) = ψ(X ). We say that x is
flipped over yz if x is replaced by its mirror image x ′ relative to the
great circle yz . We say that this flip is D (Danzer’s)–flip if
dist(x ′,X \ {x , y , z}) > ψ(X ).
If there are neither D–flips nor shifts of vertices, then we call
CG(X ) as a D–irreducible graph.
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Danzer’s work

In the Habilitationsschrift of Ludwig Danzer

“Endliche Punktmengen auf der 2-sphäre mit möglichst großem
Minimalabstand”, Universität Göthingen, 1963,

are given all D-irreducible graphs for 6 ≤ N ≤ 10.
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Danzer’s work: D–irreducible contact graphs for N = 8
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M. & Tarasov (2014): Irreducible graphs for N=8

N dmin dmax

1 1.17711 1.18349
2∗ 1.28619 1.30653
3∗ 1.23096 1.30653
4 ∗ ∗ 1.30653 1.30653
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2n − 2 conjecture

Conjecture. The contact graph of an optimal spherical n–point
configuration has at least 2n − 2 edges.
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The Tammes problem

How must N congruent non-overlapping spherical caps be packed
on the surface of a unit sphere so that the angular diameter of
spherical caps will be as great as possible

Tammes PML (1930). “On the origin of number and arrangement
of the places of exit on pollen grains”. Diss. Groningen.
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Maximal graphs GN

Let X be a subset of S2 with |X | = N. We say that CG(X ) is
maximal if ψ(X ) = dN and its number of edges is minimum. We
denote this graph by GN .
Actually, this definition does not assume that GN is unique. We use
this designation for some CG(X ) with ψ(X ) = dN .

Proposition. Let CG(X ) be a maximal graph GN . Then for N ≥ 6
the graph CG(X ) is irreducible.
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Tammes’ problem for N = 13

The contact graph Γ13 :=CG(P13) with ψ(P13) ≈ 57.1367◦
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Tammes’ problem for N = 14

Theorem (M. & A. Tarasov). The arrangement of 14 points P14
in S2 is the best possible and the maximal arrangement is unique
up to isometry.
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Figure: An arrangement of 14 points P14 and its contact graph Γ14 with
ψ(P14) ≈ 55.67057◦.
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Fejes Tóth’s problem on maximum contacts

Let X ⊂ S2

e(X ) := number of edges of the contact graph CG(X )

KN(d) := max kissing (contact) number of N spherical caps with
diameter d

KN := max
d≤dN

KN(d) = max
X∈S2,|X |=N

e(X )

Fejes Tóth’s problem (1986): Find KN .
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Maximum contacts

κ(d) :=kissing number of the spherical cap with diameter d in S2.
If d ≤ arccos(1/

√
5), then κ(d) = 5.

We say that a packing of N spherical caps with diameter d is
maximal if

KN(d) = N κ(d)/2.

Theorem (R. M. Robinson (1969), L. Fejes Tóth (1969))

A maximal packing of N equal spherical caps exists only if
N = 2, 3, 4, 6, 8, 9, 12, 24, 48, 60 or 120.

K8 = 16, K9 = 18 and for N ≥ 12 we have KN = 5N/2.
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Maximum contacts

Theorem (M. & A. Tarasov, 2015)

1 K5 = 8 (square pyramid);
2 K7 = 12;

3 K10 = 21;

4 K11 = 25.

Open problem: Find KN for N = 13, 14, ..., 23.
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Maximum contacts: open problem

Kinf := lim
N→∞

inf KN

N
, Ksup := lim

N→∞
sup KN

N

We have
2 ≤ Kinf ≤ Ksup ≤ 5/2

Open problem: Find better bounds for Kinf and Ksup.
Do we have the equality: Kinf = Ksup?
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Uniqueness of maximal irreducible graphs

Problem. Is it true that for N > 5 on S2 there is unique (up to
isomorphism) maximal graph GN?
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THANK YOU


