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Abstract

Any graph G can be embedded in a Euclidean space as a
two–distance set with the (minimum) distance equals a if the
vertices are adjacent and distances equal b otherwise. The
Euclidean representation number of G is the smallest dimension in
which G is representable. In this talk we consider spherical and J –
spherical representation numbers of G . We give exact formulas for
these numbers using multiplicities of polynomials that are defined
by the Caley–Menger determinant. We show that using W.
Kuperberg’s theorem the representation numbers can be found
explicitly for the join of graphs.



Two–distance sets

A set S in Euclidean space Rn is called a two-distance set, if there
are two distances a and b, and the distances between pairs of
points of S are either a or b.

If a two-distance set S lies in the unit sphere Sn−1, then S is called
spherical two-distance set.



Euclidean representation of graphs

Let G be a graph on n vertices. Consider a Euclidean
representation of G in Rd as a two distance set. In other words,
there are two positive real numbers a and b with b ≥ a > 0 and an
embedding f of the vertex set of G into Rd such that

dist(f (u), f (v)) :=

{
a if uv is an edge of G
b otherwise

We will call the smallest d such that G is representable in Rd the
Euclidean representation number of G and denote it dimE

2 (G ).



Euclidean representation number of graphs

A complete graph Kn represents the edges of a regular
(n − 1)–simplex. So we have dimE

2 (Kn) = n − 1. That implies

dimE
2 (G ) ≤ n − 1

for any graph G on n vertices.



Since for a two–distance set of cardinality n in Rd

n ≤ (d + 1)(d + 2)

2
.

we have

dimE
2 (G ) ≥

√
8n + 1− 3

2
.



Einhorn and Schoenberg work

Einhorn and Schoenberg (ES66) proved that

Theorem

Let G be a simple graph on n vertices. Then dimE
2 (G ) = n − 1 if

and only if G is a disjoint union of cliques.



Einhorn and Schoenberg work on two–distance sets (1966)

Denote by Σn the number of all two–distance sets with n vertices in
Rn−2. Then

Σn = Γn − p(n),

where Γn is the number of all simple undirected graphs and p(n) is
the number of unrestricted partitions of n.

|Γ4| = 11, |Γ5| = 34, |Γ6| = 156, |Γ7| = 1044, ...

p(4) = 5, p(5) = 7, p(6) = 11 , p(7) = 15, ...

|Σ4| = 6, |Σ5| = 27, |Σ6| = 145, |Σ7| = 1029, ...
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Let S = {p1, . . . , pn} in Rn−1. Denote dij := dist(pi , pj).
Consider the Cayley–Menger determinant

CS :=

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 ... 1
1 0 d2

12 ... d2
1n

1 d2
21 0 ... d2

2n
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
1 d2

n1 d2
n2 ... 0

∣∣∣∣∣∣∣∣∣∣∣∣
Let S be a two-distance set with a = 1 and b > 1. Then for i 6= j ,

d2
ij = 1 or d2

ij = b2

CS is a polynomial in t = b2.

Denote this polynomial by C (t).



V 2
n−1(S) =

(−1)n Cs

2n−1 ((n − 1)!)2

Actually, Einhorn and Schoenberg considered the discriminating
polynomial D(t) that can be defined through the Gram
determinant. It is known that

C (t) = (−1)nD(t)



Let G be a simple graph. Then

CG (t) := C (t)

is uniquely defined by G .

Suppose there is a solution t > 1 of CG (t) = 0.

Definition

Denote by τ1 the smallest root t of CG such that t > 1.

µ(G ) denote the multiplicity of the root τ1.

If for all roots t of CG we have t ≤ 1, then we assume that
µ(G ) := 0.



The graph complement of G

If µ(G ) > 0, then τ0(G ) := 1/τ1(G ) is a root of CḠ (t) and
τ1(Ḡ ) = 1/τ0(G ). Note that there are no more roots of CG (t) on
the interval [τ0(G ), τ1(G )].

CḠ (t) is the reciprocal polynomial of CG (t), i.e.

CḠ (t) = tkCG (1/t), k = degCG (t).



The Einhorn–Schoenberg theorem

Theorem

Let G be a simple graph on n vertices. Then

dimE
2 (G ) = n − µ(G )− 1

If µ(G ) > 0, then a minimal Euclidean representation of G is
uniquely define up to isometry.



C1(t) = t2(2− t), C2(t) = t(3− t), C3(t) = −t2 + 4t − 1
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C4(t) = t2(3−t), C5(t) = (t+1)(3t−t2−1), C6(t) = −t2+4t−1
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G = K2,...,2

Theorem

Let G be a complete m–partite graph K2,...,2. Then dimE
2 (G ) = m

and a minimal Euclidean representation of G is a regular
cross–polytope.

Proof.

We have n = 2m and

CG (t) = 2m tm(2− t)m−1.

Then τ1 = 2 and µ(G ) = m − 1. Thus, dimE
2 (K2,...,2) = m.

V. Alexandrov (2016)



G = K2,...,2: geometric proof

Lemma

Let for sets X1 and X2 in Rd there is a > 0 such that
dist(p1, p2) = a for all p1 ∈ X1, p2 ∈ X2.
Then both Xi are spherical sets and the affine spans aff(Xi ) in Rd

are orthogonal each other.

Let S := f (V (G )) in Rd . Then Rd can be split into the orthogonal
product

∏m
i=1 Li of lines such that for Si := S ∩ Li we have

|Si | = 2. Thus, d = m and S is a regular cross–polytope.



Spherical representations of graphs

Let f be a Euclidean representation of a graph G on n vertices in
Rd as a two distance set. We say that f is a spherical
representation of G if the image f (G ) lies on a (d − 1)–sphere in
Rd . We will call the smallest d such that G is spherically
representable in Rd the spherical representation number of G and
denote it dimS

2(G ).

Nozaki and Shinohara (2012) using Roy’s results (2010) give a
necessary and sufficient condition of a Euclidean representation of a
graph G to be spherical.

We define a polynomial MG (t) and show that a Euclidean
representation is spherical if and only if the multiplicity of τ1(G ) is
the same for CG (t) and MG (t)



Spherical representations of graphs

Let S = {p1, . . . , pn} be a set in Rn−1. As above
dij := dist(pi , pj). Let

MS :=

∣∣∣∣∣∣∣∣∣∣
0 d2

12 ... d2
1n

d2
21 0 ... d2

2n
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
d2
n1 d2

n2 ... 0

∣∣∣∣∣∣∣∣∣∣



The circumradius of a simplex

It is well known, that if the points in S form a simplex of dimension
(n − 1), the radius R of the sphere circumscribed around this
simplex is given by

R2 = −1
2
MS

CS
.



Spherical representations of graphs

For a given graph G we denote by MG (t) the polynomial in t = b2

that defined by MS . Let

FG (t) := −1
2
MG (t)

CG (t)
.

If G is a graph with µ(G ) > 0 and FG (τ1) <∞, then denote
R(G ) :=

√
FG (τ1). Otherwise, put R(G ) :=∞.

We will call R(G ) the circumradius of G .



Spherical representations of graphs

Theorem

Let G be a graph on n vertices with R(G ) <∞. Then
dimS

2(G ) = n − µ(G )− 1, otherwise dimS
2(G ) = n − 1.



The circumradius of a graph

Theorem

R(G ) ≥ 1/
√
2.

It is not clear what is the range of R(G )? If R(G ) <∞, then for a
fixed n there are only finitely many cases. Thus the range is a
countable set.

Open question. Suppose R(G ) <∞. What is the upper bound of
R(G )? Can R(G ) be greater than 1?



J–spherical representation of graphs

We have R(G ) ≥ 1/
√
2. Now consider the boundary case

R(G ) = 1/
√
2.

Definition

Let f be a spherical representation of a graph G in Rd as a two
distance set. We say that f is a J–spherical representation of G if
the image f (G ) lies in the unit sphere Sd−1 and the first
(minimum) distance a =

√
2.

Theorem

For any graph G 6= Kn there is a unique (up to isometry)
J–spherical representation.



J–spherical representation of graphs

The uniqueness of a J–spherical representation of G 6= Kn shows
that the following definition is correct.

Definition

dimJ
2(G ) = J–spherical representation dimension

b∗(G ) = the second distance of this representation.

If G is the pentagon, then dimS
2(G ) = 2 < dimJ

2(G ) = 4.

Theorem

Let G 6= Kn be a graph on n vertices. If R(G ) = 1/
√
2, then

dimJ
2(G ) = n − µ(G )− 1, otherwise dimJ

2(G ) = n − 1.



W. Kuperberg’s theorem

Rankin (1955) proved that if S is a set of d + k , k ≥ 2, points in
the unit sphere Sd−1 in Rd , then two of the points in S are at a
distance of at most

√
2 from each other. Wlodzimierz Kuperberg

(2007) extended this result and proved that:

Theorem

Let d and k be integers such that 2 ≤ k ≤ d . If S is a
(d + k)–point subset of the unit d–ball such that the minimum
distance between points is at least

√
2, then: (1) every point of S

lies on the boundary of the ball, and (2) Rd can be split into the
orthogonal product

∏k
i=1 Li nondegenerate linear subspaces so that

for Si := S ∩ Li , di := dim Li we have |Si | = di + 1 and
rank(Si ) = di (i = 1, 2, ..., k).



W. Kuperberg’s theorem

Definition

The join X ∗ Y of two sets X ⊂ Rm and Y ⊂ Rn is formed in the
following manner. Embed X in the m–dimensional linear subspace
of Rm+n as

{(x1, . . . , xm, 0, . . . , 0) : x = (x1, . . . , xm) ∈ X}

and embed Y as

{(0, . . . , 0, y1, . . . , yn) : y ∈ Y }.

Geometrically the join corresponds to putting the two sets X and Y
in orthogonal linear subspaces of Rm+n. So Kuperberg’s theorem
implies that S = S1 ∗ . . . ∗ Sk .



W. Kuperberg’s theorem

Kuperberg’s theorem can be slightly extended. What is a
join–indecomposable spherical set? There are just two types.

Type I: S ⊂ Sd−1, |S | = d + 1, rank(S) = d and the center O of
Sd−1 lies in the interior of conv(S).

Type II: S ⊂ Sd−1, |S | = d , rank(S) = d − 1 and O /∈ aff(S).

Theorem

Let S be as in the Theorem. Then S = S1 ∗ . . . ∗ Sm, where
Si , i = 1, . . . , k are of Type I and all other Si are of Type II.



Join of spherical two–distance sets

Definition

We say that a two–distance set S in Rd is a J–spherical
two–distance set (JSTD) if S lies in the unit sphere centered at the
origin 0 and a =

√
2. For this S the second distance b will be

denoted b(S).

Theorem

Let S1 and S2 be JSTD sets in Rd . Then S := S1 ∪ S2 is a JSTD
set and S = S1 ∗ S2 if and only if
(1) dist(p1, p2) =

√
2 for all points p1 ∈ S1, p2 ∈ S2;

(2) b(S1) = b(S2);
(3) rank(S ∪ 0) = rank(S1 ∪ 0) + rank(S2 ∪ 0).



Representation numbers of the join of graphs

Recall that the join G = G1 + G2 of graphs G1 and G2 with disjoint
point sets V1 and V2 and edge sets E1 and E2 is the graph union
G1 ∪ G2 together with all the edges joining V1 and V2.



Representation numbers of the join of graphs

Definition

We say that G on n vertices is J–simple if dimJ
2(G ) = n − 1.

Theorem

Let G := G1 + . . .+ Gm. Suppose all Gi are J–simple and

b∗(G1) = . . . = b∗(Gk) < b∗(Gk+1) ≤ . . . ≤ b∗(Gm).

Then

dimJ
2(G ) = dimS

2(G ) = n − k , dimE
2 (G ) = n −max(k , 2),

where n denote the number of vertices of G .



Representation numbers of complete multipartite graphs

Corollary

Let G be a complete multipartite graph Kn1...nm . Suppose

n1 = . . . = nk > nk+1 ≥ . . . ≥ nm.

Let n := n1 + . . .+ nm. Then
1 If k = 1, then dimE

2 (G ) = n − 2, otherwise dimE
2 (G ) = n − k ;

2 dimS
2(G ) = n − k ;

3 dimJ
2(G ) = n − k .

Note that Statement 1 in the Corollary first proved by Roy (2010).
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