Euclidean and spherical representation of graphs

Oleg R. Musin

Abstract

Any graph G can be embedded in a Euclidean space as a two-distance set with the (minimum) distance equals a if the vertices are adjacent and distances equal b otherwise. The Euclidean representation number of G is the smallest dimension in which G is representable. In this talk we consider spherical and J spherical representation numbers of G. We give exact formulas for these numbers using multiplicities of polynomials that are defined by the Caley-Menger determinant. We show that using W. Kuperberg's theorem the representation numbers can be found explicitly for the join of graphs.

Two-distance sets

A set S in Euclidean space \mathbb{R}^{n} is called a two-distance set, if there are two distances a and b, and the distances between pairs of points of S are either a or b.

If a two-distance set S lies in the unit sphere \mathbb{S}^{n-1}, then S is called spherical two-distance set.

Euclidean representation of graphs

Let G be a graph on n vertices. Consider a Euclidean representation of G in \mathbb{R}^{d} as a two distance set. In other words, there are two positive real numbers a and b with $b \geq a>0$ and an embedding f of the vertex set of G into \mathbb{R}^{d} such that

$$
\operatorname{dist}(f(u), f(v)):=\left\{\begin{array}{l}
a \text { if } u v \text { is an edge of } G \\
b \text { otherwise }
\end{array}\right.
$$

We will call the smallest d such that G is representable in \mathbb{R}^{d} the Euclidean representation number of G and denote it $\operatorname{dim}_{2}^{\mathrm{E}}(G)$.

Euclidean representation number of graphs

A complete graph K_{n} represents the edges of a regular $(n-1)$-simplex. So we have $\operatorname{dim}_{2}^{\mathrm{E}}\left(\mathrm{K}_{n}\right)=n-1$. That implies

$$
\operatorname{dim}_{2}^{\mathrm{E}}(G) \leq n-1
$$

for any graph G on n vertices.

Since for a two-distance set of cardinality n in \mathbb{R}^{d}

$$
n \leq \frac{(d+1)(d+2)}{2}
$$

we have

$$
\operatorname{dim}_{2}^{\mathrm{E}}(G) \geq \frac{\sqrt{8 n+1}-3}{2}
$$

Einhorn and Schoenberg work

Einhorn and Schoenberg (ES66) proved that

Theorem

Let G be a simple graph on n vertices. Then $\operatorname{dim}_{2}^{\mathrm{E}}(G)=n-1$ if and only if G is a disjoint union of cliques.

Einhorn and Schoenberg work on two-distance sets (1966)

Denote by Σ_{n} the number of all two-distance sets with n vertices in \mathbb{R}^{n-2}. Then

$$
\Sigma_{n}=\Gamma_{n}-p(n)
$$

where Γ_{n} is the number of all simple undirected graphs and $p(n)$ is the number of unrestricted partitions of n.

$$
\begin{array}{cccc}
\left|\Gamma_{4}\right|=11, & \left|\Gamma_{5}\right|=34, & \left|\Gamma_{6}\right|=156, & \left|\Gamma_{7}\right|=1044, \ldots \\
p(4)=5, & p(5)=7, & p(6)=11, & p(7)=15, \ldots \\
\left|\Sigma_{4}\right|=6, & \left|\Sigma_{5}\right|=27, & \left|\Sigma_{6}\right|=145, & \left|\Sigma_{7}\right|=1029, \ldots
\end{array}
$$

Let $S=\left\{p_{1}, \ldots, p_{n}\right\}$ in \mathbb{R}^{n-1}. Denote $d_{i j}:=\operatorname{dist}\left(p_{i}, p_{j}\right)$.
Consider the Cayley-Menger determinant

$$
C_{S}:=\left|\begin{array}{ccccc}
0 & 1 & 1 & \ldots & 1 \\
1 & 0 & d_{12}^{2} & \ldots & d_{1 n}^{2} \\
1 & d_{21}^{2} & 0 & \ldots & d_{2 n}^{2} \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right| \cdots \cdots .
$$

Let S be a two-distance set with $a=1$ and $b>1$. Then for $i \neq j$,

$$
d_{i j}^{2}=1 \text { or } d_{i j}^{2}=b^{2}
$$

C_{S} is a polynomial in $t=b^{2}$.
Denote this polynomial by $C(t)$.

$$
V_{n-1}^{2}(S)=\frac{(-1)^{n} C_{s}}{2^{n-1}((n-1)!)^{2}}
$$

Actually, Einhorn and Schoenberg considered the discriminating polynomial $D(t)$ that can be defined through the Gram determinant. It is known that

$$
C(t)=(-1)^{n} D(t)
$$

Let G be a simple graph. Then

$$
C_{G}(t):=C(t)
$$

is uniquely defined by G.
Suppose there is a solution $t>1$ of $C_{G}(t)=0$.

Definition

Denote by τ_{1} the smallest root t of C_{G} such that $t>1$. $\mu(G)$ denote the multiplicity of the root τ_{1}.

If for all roots t of C_{G} we have $t \leq 1$, then we assume that $\mu(G):=0$.

The graph complement of G

If $\mu(G)>0$, then $\tau_{0}(G):=1 / \tau_{1}(G)$ is a root of $C_{\bar{G}}(t)$ and $\tau_{1}(\bar{G})=1 / \tau_{0}(G)$. Note that there are no more roots of $C_{G}(t)$ on the interval $\left[\tau_{0}(G), \tau_{1}(G)\right]$.
$C_{\bar{G}}(t)$ is the reciprocal polynomial of $C_{G}(t)$, i.e.

$$
C_{\bar{G}}(t)=t^{k} C_{G}(1 / t), \quad k=\operatorname{deg} C_{G}(t) .
$$

The Einhorn-Schoenberg theorem

Theorem

Let G be a simple graph on n vertices. Then

$$
\operatorname{dim}_{2}^{\mathrm{E}}(G)=n-\mu(G)-1
$$

If $\mu(G)>0$, then a minimal Euclidean representation of G is uniquely define up to isometry.

$$
C_{1}(t)=t^{2}(2-t), \quad C_{2}(t)=t(3-t), \quad C_{3}(t)=-t^{2}+4 t-1
$$

$$
C_{4}(t)=t^{2}(3-t), \quad C_{5}(t)=(t+1)\left(3 t-t^{2}-1\right), \quad C_{6}(t)=-t^{2}+4 t-1
$$

$$
G=K_{2, \ldots, 2}
$$

Theorem

Let G be a complete m-partite graph $K_{2, \ldots, 2}$. Then $\operatorname{dim}_{2}^{\mathrm{E}}(G)=m$ and a minimal Euclidean representation of G is a regular cross-polytope.

Proof.

We have $n=2 m$ and

$$
C_{G}(t)=2 m t^{m}(2-t)^{m-1}
$$

Then $\tau_{1}=2$ and $\mu(G)=m-1$. Thus, $\operatorname{dim}_{2}^{\mathrm{E}}\left(K_{2, \ldots, 2}\right)=m$.
V. Alexandrov (2016)

$G=K_{2, \ldots, 2}$: geometric proof

Lemma

Let for sets X_{1} and X_{2} in \mathbb{R}^{d} there is a >0 such that $\operatorname{dist}\left(p_{1}, p_{2}\right)=a$ for all $p_{1} \in X_{1}, p_{2} \in X_{2}$.
Then both X_{i} are spherical sets and the affine spans aff $\left(X_{i}\right)$ in \mathbb{R}^{d} are orthogonal each other.

Let $S:=f(V(G))$ in \mathbb{R}^{d}. Then \mathbb{R}^{d} can be split into the orthogonal product $\prod_{i=1}^{m} L_{i}$ of lines such that for $S_{i}:=S \cap L_{i}$ we have $\left|S_{i}\right|=2$. Thus, $d=m$ and S is a regular cross-polytope.

Spherical representations of graphs

Let f be a Euclidean representation of a graph G on n vertices in \mathbb{R}^{d} as a two distance set. We say that f is a spherical representation of G if the image $f(G)$ lies on a $(d-1)$-sphere in \mathbb{R}^{d}. We will call the smallest d such that G is spherically representable in \mathbb{R}^{d} the spherical representation number of G and denote it $\operatorname{dim}_{2}^{S}(G)$.
Nozaki and Shinohara (2012) using Roy's results (2010) give a necessary and sufficient condition of a Euclidean representation of a graph G to be spherical.

We define a polynomial $M_{G}(t)$ and show that a Euclidean representation is spherical if and only if the multiplicity of $\tau_{1}(G)$ is the same for $C_{G}(t)$ and $M_{G}(t)$

Spherical representations of graphs

Let $S=\left\{p_{1}, \ldots, p_{n}\right\}$ be a set in \mathbb{R}^{n-1}. As above $d_{i j}:=\operatorname{dist}\left(p_{i}, p_{j}\right)$. Let

$$
M_{S}:=\left|\begin{array}{cccc}
0 & d_{12}^{2} & \ldots & d_{1 n}^{2} \\
d_{21}^{2} & 0 & \ldots & d_{2 n}^{2} \\
\ldots & \ldots & \ldots & \ldots \\
\cdots & \cdots & \cdots \\
\ldots & \ldots & \cdots & \cdots
\end{array}\right|
$$

The circumradius of a simplex

It is well known, that if the points in S form a simplex of dimension ($n-1$), the radius R of the sphere circumscribed around this simplex is given by

$$
R^{2}=-\frac{1}{2} \frac{M_{S}}{C_{S}} .
$$

Spherical representations of graphs

For a given graph G we denote by $M_{G}(t)$ the polynomial in $t=b^{2}$ that defined by M_{S}. Let

$$
F_{G}(t):=-\frac{1}{2} \frac{M_{G}(t)}{C_{G}(t)}
$$

If G is a graph with $\mu(G)>0$ and $F_{G}\left(\tau_{1}\right)<\infty$, then denote $\mathcal{R}(G):=\sqrt{F_{G}\left(\tau_{1}\right)}$. Otherwise, put $\mathcal{R}(G):=\infty$.

We will call $\mathcal{R}(G)$ the circumradius of G.

Spherical representations of graphs

Theorem

Let G be a graph on n vertices with $\mathcal{R}(G)<\infty$. Then $\operatorname{dim}_{2}^{S}(G)=n-\mu(G)-1$, otherwise $\operatorname{dim}_{2}^{S}(G)=n-1$.

The circumradius of a graph

Theorem

$\mathcal{R}(G) \geq 1 / \sqrt{2}$.
It is not clear what is the range of $\mathcal{R}(G)$? If $\mathcal{R}(G)<\infty$, then for a fixed n there are only finitely many cases. Thus the range is a countable set.

Open question. Suppose $\mathcal{R}(G)<\infty$. What is the upper bound of $\mathcal{R}(G)$? Can $\mathcal{R}(G)$ be greater than 1 ?

J-spherical representation of graphs

We have $\mathcal{R}(G) \geq 1 / \sqrt{2}$. Now consider the boundary case $\mathcal{R}(G)=1 / \sqrt{2}$.

Definition

Let f be a spherical representation of a graph G in \mathbb{R}^{d} as a two distance set. We say that f is a J-spherical representation of G if the image $f(G)$ lies in the unit sphere \mathbb{S}^{d-1} and the first (minimum) distance $a=\sqrt{2}$.

Theorem

For any graph $G \neq K_{n}$ there is a unique (up to isometry) J-spherical representation.

J-spherical representation of graphs

The uniqueness of a J-spherical representation of $G \neq K_{n}$ shows that the following definition is correct.

Definition

$\operatorname{dim}_{2}^{\mathrm{J}}(G)=J$-spherical representation dimension
$b_{*}(G)=$ the second distance of this representation.
If G is the pentagon, then $\operatorname{dim}_{2}^{S}(G)=2<\operatorname{dim}_{2}^{J}(G)=4$.

Theorem

Let $G \neq K_{n}$ be a graph on n vertices. If $\mathcal{R}(G)=1 / \sqrt{2}$, then

$$
\operatorname{dim}_{2}^{\mathrm{J}}(G)=n-\mu(G)-1, \text { otherwise } \operatorname{dim}_{2}^{\mathrm{J}}(G)=n-1
$$

W. Kuperberg's theorem

Rankin (1955) proved that if S is a set of $d+k, k \geq 2$, points in the unit sphere \mathbb{S}^{d-1} in \mathbb{R}^{d}, then two of the points in S are at a distance of at most $\sqrt{2}$ from each other. Wlodzimierz Kuperberg (2007) extended this result and proved that:

Theorem

Let d and k be integers such that $2 \leq k \leq d$. If S is a $(d+k)$-point subset of the unit d-ball such that the minimum distance between points is at least $\sqrt{2}$, then: (1) every point of S lies on the boundary of the ball, and (2) \mathbb{R}^{d} can be split into the orthogonal product $\prod_{i=1}^{k} L_{i}$ nondegenerate linear subspaces so that for $S_{i}:=S \cap L_{i}, d_{i}:=\operatorname{dim} L_{i}$ we have $\left|S_{i}\right|=d_{i}+1$ and $\operatorname{rank}\left(S_{i}\right)=d_{i}(i=1,2, \ldots, k)$.

W. Kuperberg's theorem

Definition

The join $X * Y$ of two sets $X \subset \mathbb{R}^{m}$ and $Y \subset \mathbb{R}^{n}$ is formed in the following manner. Embed X in the m-dimensional linear subspace of \mathbb{R}^{m+n} as

$$
\left\{\left(x_{1}, \ldots, x_{m}, 0, \ldots, 0\right): x=\left(x_{1}, \ldots, x_{m}\right) \in X\right\}
$$

and embed Y as

$$
\left\{\left(0, \ldots, 0, y_{1}, \ldots, y_{n}\right): y \in Y\right\}
$$

Geometrically the join corresponds to putting the two sets X and Y in orthogonal linear subspaces of \mathbb{R}^{m+n}. So Kuperberg's theorem implies that $S=S_{1} * \ldots * S_{k}$.

W. Kuperberg's theorem

Kuperberg's theorem can be slightly extended. What is a join-indecomposable spherical set? There are just two types.
Type I: $S \subset \mathbb{S}^{d-1},|S|=d+1, \operatorname{rank}(S)=d$ and the center O of \mathbb{S}^{d-1} lies in the interior of $\operatorname{conv}(S)$.
Type II: $S \subset \mathbb{S}^{d-1},|S|=d, \operatorname{rank}(S)=d-1$ and $O \notin \operatorname{aff}(S)$.

Theorem

Let S be as in the Theorem. Then $S=S_{1} * \ldots * S_{m}$, where $S_{i}, i=1, \ldots, k$ are of Type I and all other S_{i} are of Type II.

Join of spherical two-distance sets

Definition

We say that a two-distance set S in \mathbb{R}^{d} is a J-spherical two-distance set (JSTD) if S lies in the unit sphere centered at the origin 0 and $a=\sqrt{2}$. For this S the second distance b will be denoted $b(S)$.

Theorem

Let S_{1} and S_{2} be JSTD sets in \mathbb{R}^{d}. Then $S:=S_{1} \cup S_{2}$ is a JSTD set and $S=S_{1} * S_{2}$ if and only if
(1) $\operatorname{dist}\left(p_{1}, p_{2}\right)=\sqrt{2}$ for all points $p_{1} \in S_{1}, p_{2} \in S_{2}$;
(2) $b\left(S_{1}\right)=b\left(S_{2}\right)$;
(3) $\operatorname{rank}(S \cup 0)=\operatorname{rank}\left(S_{1} \cup 0\right)+\operatorname{rank}\left(S_{2} \cup 0\right)$.

Representation numbers of the join of graphs

Recall that the join $G=G_{1}+G_{2}$ of graphs G_{1} and G_{2} with disjoint point sets V_{1} and V_{2} and edge sets E_{1} and E_{2} is the graph union $G_{1} \cup G_{2}$ together with all the edges joining V_{1} and V_{2}.

Representation numbers of the join of graphs

Definition

We say that G on n vertices is J-simple if $\operatorname{dim}_{2}^{\mathrm{J}}(G)=n-1$.

Theorem

Let $G:=G_{1}+\ldots+G_{m}$. Suppose all G_{i} are J-simple and

$$
b_{*}\left(G_{1}\right)=\ldots=b_{*}\left(G_{k}\right)<b_{*}\left(G_{k+1}\right) \leq \ldots \leq b_{*}\left(G_{m}\right)
$$

Then

$$
\operatorname{dim}_{2}^{\mathrm{J}}(G)=\operatorname{dim}_{2}^{\mathrm{S}}(G)=n-k, \operatorname{dim}_{2}^{\mathrm{E}}(G)=n-\max (k, 2),
$$

where n denote the number of vertices of G.

Representation numbers of complete multipartite graphs

Corollary

Let G be a complete multipartite graph $K_{n_{1} \ldots n_{m}}$. Suppose

$$
n_{1}=\ldots=n_{k}>n_{k+1} \geq \ldots \geq n_{m}
$$

Let $n:=n_{1}+\ldots+n_{m}$. Then
1 If $k=1$, then $\operatorname{dim}_{2}^{\mathrm{E}}(G)=n-2$, otherwise $\operatorname{dim}_{2}^{\mathrm{E}}(G)=n-k$;
$2 \operatorname{dim}_{2}^{S}(G)=n-k$;
$3 \operatorname{dim}_{2}^{\mathrm{J}}(G)=n-k$.
Note that Statement 1 in the Corollary first proved by Roy (2010).

THANK YOU

