Representation of graphs: open problems

Oleg R. Musin

Range of the circumradius $\mathcal{R}(G)$

Let $\mathcal{R}(G) < \infty$. What is the range of $\mathcal{R}(G)$? Since for a fixed n there are finitely many graphs G this range is a countable subset of the interval $[1/\sqrt{2}, \infty)$.

What is the maximum value of $\mathcal{R}(G)$? Can $\mathcal{R}(G)$ be greater than 1?

The second distance $\beta_*(G)$

- (1) What is the range of $\beta_*(G)$?
- (2) Can $\beta_*(G_1) = \beta_*(G_2)$ for distinct G_1 and G_2 ?

For the second question the answer is positive. Let σ be a collection of positive integers n_1, \ldots, n_m with m > 1. We denote

$$|\sigma|:=n_1+\ldots+n_m.$$

Let $\bar{K}_{\sigma}:=\bar{K}_{n_1,\dots,n_m}$, where \bar{K}_{n_1,\dots,n_m} is the graph complement of the complete m-partite graph K_{n_1,\dots,n_m} . In other words, \bar{K}_{σ} is the disjoint union of cliques of sizes n_1,\dots,n_m .

Einhorn and Schoenberg proved that $\dim_2^{\mathrm{E}}(\bar{K}_{\sigma}) = |\sigma| - 1$. The converse statement is also true. If for a graph G on n vertices we have $\dim_2^{\mathrm{E}}(G) = n - 1$, then G is \bar{K}_{σ} for some σ with $|\sigma| = n$.

The second distance $\beta_*(G)$

Let $\sigma_1 = (1, 1, 1)$, $\sigma_2 = (2, 2)$ and $\sigma_3 = (1, 4)$. Then $\beta_*(\sigma_i) = \sqrt{3}$ for i = 1, 2, 3.

Another example,

$$\sigma = (1, 1, 1, 1, 1), (2, 2, 2), (4, 4), (2, 8), (1, 16).$$

For all these collections $\beta_*(\sigma) = \sqrt{5/2}$.

It is an interesting problem to describe sets of collections σ with the same $\beta_*(\sigma)$.

Representations of colored $E(K_n)$ as s-distance sets

First consider an equivalent definition of graph representations. Let G = (V(G), E(G)) be a graph on n vertices. We have $E(K_n) = E(G) \cup E(\bar{G})$. Then it is can be considered as a coloring of $E(K_n)$ in two colors. Hence

$$E(K_n) = E_1 \cup E_2$$
, where $E_1 \cap E_2 = \emptyset$.

Clearly, G is uniquely defined by the equation $E(G)=E_1$. Let L(e):=i if $e\in E_i$. Then $L:E(K_n)\to\{1,2\}$ is a coloring of $E(K_n)$. A representation L as a two-distance set is an embedding f of $V(K_n)$ into \mathbb{R}^d such that $\operatorname{dist}(f(u),f(v)))=a_i$ for $[uv]\in E_i$. Here $a_2\geq a_1>0$.

Representations of colored $E(K_n)$ as s-distance sets

This definition can be extended to any number of colors. Let $L: E(K_n) \to \{1, \ldots, s\}$ be a coloring of the set of edges of a complete graph K_n . Then

$$E(\mathcal{K}_n) = E_1 \cup \ldots \cup E_s, \ E_i := \{e \in E(\mathcal{K}_n) : L(e) = i\}.$$

We say that an embedding f of the vertex set of K_n into \mathbb{R}^d is a Euclidean representation of a coloring L in \mathbb{R}^d as an s-distance set if there are s positive real numbers $a_1 \leq \ldots \leq a_s$ such that $\operatorname{dist}(f(u), f(v))) = a_i$ if and only if $[uv] \in E_i$.

Representations of colored $E(K_n)$ as s-distance sets

It is easy to extend the definitions of polynomials $C_G(t)$ and $M_G(t)$ for s-distance sets. In this case we have multivariate polynomials $C_L(t_2,\ldots,t_s)$ and $M_L(t_2,\ldots,t_s)$, where $a_1=1$ and $t_i=a_i^2$ for $i=2,\ldots,s$. It is clear that a Euclidean representation of L is spherical only if $F_L(t_2,\ldots,t_s)$ is well defined, where

$$F_L(t_2,\ldots,t_s) := -\frac{1}{2} \frac{M_L(t_2,\ldots,t_s)}{C_L(t_2,\ldots,t_s)}.$$

I think that the Einhorn–Schoenberg theorem and several later results can be generalized for representations of colorings L as s-distance sets.

Contact graph representations of G

The famous circle packing theorem (also known as the Koebe–Andreev–Thurston theorem) states that for every connected simple planar graph G there is a circle packing in the plane whose contact graph is isomorphic to G.

Now consider representations of a graph G as the contact graph of a packing of congruent spheres in \mathbb{R}^d .

Equivalently, let X be a finite subset of \mathbb{R}^d . Denote

$$\psi(X) := \min_{x,y \in X} \left\{ \operatorname{dist}(x,y) \right\}, \text{ where } x \neq y.$$

The contact graph $\operatorname{CG}(X)$ is a graph with vertices in X and edges $(x,y), x,y \in X$, such that $\operatorname{dist}(x,y) = \psi(X)$. In other words, $\operatorname{CG}(X)$ is the contact graph of a packing of spheres of diameter $\psi(X)$ with centers in X.

Contact graph representations of G

There are several combinatorial properties of contact graphs. For instance, the degree of any vertex of CG(X), $X \subset \mathbb{R}^d$, is not to exceed the kissing number k_d . For spherical contact graph representations in \mathbb{S}^2 this degree is not greater than five.

Using this and other properties of $\mathrm{CG}(X)$ were enumerated spherical irreducible contact graphs for $n \leq 11$ (Musin & Tarasov, 2013). .

It is an interesting problem to find minimal dimensions of Euclidean and spherical contact graph representations of graphs G.