Representation of graphs: open problems

Oleg R. Musin

Range of the circumradius $\mathcal{R}(G)$

Let $\mathcal{R}(G)<\infty$. What is the range of $\mathcal{R}(G)$? Since for a fixed n there are finitely many graphs G this range is a countable subset of the interval $[1 / \sqrt{2}, \infty)$.

What is the maximum value of $\mathcal{R}(G)$?
Can $\mathcal{R}(G)$ be greater than 1?

The second distance $\beta_{*}(G)$

(1) What is the range of $\beta_{*}(G)$?
(2) Can $\beta_{*}\left(G_{1}\right)=\beta_{*}\left(G_{2}\right)$ for distinct G_{1} and G_{2} ?

For the second question the answer is positive. Let σ be a collection of positive integers n_{1}, \ldots, n_{m} with $m>1$. We denote

$$
|\sigma|:=n_{1}+\ldots+n_{m}
$$

Let $\bar{K}_{\sigma}:=\bar{K}_{n_{1}, \ldots, n_{m}}$, where $\bar{K}_{n_{1}, \ldots, n_{m}}$ is the graph complement of the complete m-partite graph $K_{n_{1}, \ldots, n_{m}}$. In other words, \bar{K}_{σ} is the disjoint union of cliques of sizes n_{1}, \ldots, n_{m}.
Einhorn and Schoenberg proved that $\operatorname{dim}_{2}^{\mathrm{E}}\left(\bar{K}_{\sigma}\right)=|\sigma|-1$. The converse statement is also true. If for a graph G on n vertices we have $\operatorname{dim}_{2}^{\mathrm{E}}(G)=n-1$, then G is \bar{K}_{σ} for some σ with $|\sigma|=n$.

The second distance $\beta_{*}(G)$

Let $\sigma_{1}=(1,1,1), \sigma_{2}=(2,2)$ and $\sigma_{3}=(1,4)$. Then $\beta_{*}\left(\sigma_{i}\right)=\sqrt{3}$ for $i=1,2,3$.
Another example,

$$
\sigma=(1,1,1,1,1),(2,2,2),(4,4),(2,8),(1,16)
$$

For all these collections $\beta_{*}(\sigma)=\sqrt{5 / 2}$.
It is an interesting problem to describe sets of collections σ with the same $\beta_{*}(\sigma)$.

Representations of colored $E\left(K_{n}\right)$ as s-distance sets

First consider an equivalent definition of graph representations. Let $G=(V(G), E(G))$ be a graph on n vertices. We have $E\left(K_{n}\right)=E(G) \cup E(\bar{G})$. Then it is can be considered as a coloring of $E\left(K_{n}\right)$ in two colors. Hence

$$
E\left(K_{n}\right)=E_{1} \cup E_{2}, \text { where } E_{1} \cap E_{2}=\emptyset
$$

Clearly, G is uniquely defined by the equation $E(G)=E_{1}$.
Let $L(e):=i$ if $e \in E_{i}$. Then $L: E\left(K_{n}\right) \rightarrow\{1,2\}$ is a coloring of $E\left(K_{n}\right)$. A representation L as a two-distance set is an embedding f of $V\left(K_{n}\right)$ into \mathbb{R}^{d} such that $\left.\operatorname{dist}(f(u), f(v))\right)=a_{i}$ for $[u v] \in E_{i}$. Here $a_{2} \geq a_{1}>0$.

Representations of colored $E\left(K_{n}\right)$ as s-distance sets

This definition can be extended to any number of colors. Let $L: E\left(K_{n}\right) \rightarrow\{1, \ldots, s\}$ be a coloring of the set of edges of a complete graph K_{n}. Then

$$
E\left(K_{n}\right)=E_{1} \cup \ldots \cup E_{s}, E_{i}:=\left\{e \in E\left(K_{n}\right): L(e)=i\right\} .
$$

We say that an embedding f of the vertex set of K_{n} into \mathbb{R}^{d} is a Euclidean representation of a coloring L in \mathbb{R}^{d} as an s-distance set if there are s positive real numbers $a_{1} \leq \ldots \leq a_{s}$ such that $\operatorname{dist}(f(u), f(v)))=a_{i}$ if and only if $[u v] \in E_{i}$.

Representations of colored $E\left(K_{n}\right)$ as s-distance sets

It is easy to extend the definitions of polynomials $C_{G}(t)$ and $M_{G}(t)$ for s-distance sets. In this case we have multivariate polynomials $C_{L}\left(t_{2}, \ldots, t_{s}\right)$ and $M_{L}\left(t_{2}, \ldots, t_{s}\right)$, where $a_{1}=1$ and $t_{i}=a_{i}^{2}$ for $i=2, \ldots, s$. It is clear that a Euclidean representation of L is spherical only if $F_{L}\left(t_{2}, \ldots, t_{s}\right)$ is well defined, where

$$
F_{L}\left(t_{2}, \ldots, t_{s}\right):=-\frac{1}{2} \frac{M_{L}\left(t_{2}, \ldots, t_{s}\right)}{C_{L}\left(t_{2}, \ldots, t_{s}\right)} .
$$

I think that the Einhorn-Schoenberg theorem and several later results can be generalized for representations of colorings L as s-distance sets.

Contact graph representations of G

The famous circle packing theorem (also known as the Koebe-Andreev-Thurston theorem) states that for every connected simple planar graph G there is a circle packing in the plane whose contact graph is isomorphic to G.

Now consider representations of a graph G as the contact graph of a packing of congruent spheres in \mathbb{R}^{d}. Equivalently, let X be a finite subset of \mathbb{R}^{d}. Denote

$$
\psi(X):=\min _{x, y \in X}\{\operatorname{dist}(x, y)\}, \text { where } x \neq y
$$

The contact graph $\mathrm{CG}(X)$ is a graph with vertices in X and edges $(x, y), x, y \in X$, such that $\operatorname{dist}(x, y)=\psi(X)$. In other words, $\mathrm{CG}(X)$ is the contact graph of a packing of spheres of diameter $\psi(X)$ with centers in X.

Contact graph representations of G

There are several combinatorial properties of contact graphs. For instance, the degree of any vertex of $\operatorname{CG}(X), X \subset \mathbb{R}^{d}$, is not to exceed the kissing number k_{d}. For spherical contact graph representations in \mathbb{S}^{2} this degree is not greater than five.
Using this and other properties of $\operatorname{CG}(X)$ were enumerated spherical irreducible contact graphs for $n \leq 11$ (Musin \& Tarasov, 2013)

It is an interesting problem to find minimal dimensions of Euclidean and spherical contact graph representations of graphs G.

