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a b s t r a c t

Every graph G can be embedded in a Euclidean space as a two-
distance set. The Euclidean representation number of G is the
smallest dimension in which G is representable by such an
embedding. We consider spherical and J-spherical representation
numbers ofG and give exact formulas for these numbers usingmul-
tiplicities of polynomials that are defined by the Cayley–Menger
determinant. One of the main results of the paper are explicit
formulas for the representation numbers of the join of graphs
which are obtained from W. Kuperberg’s type theorem for two-
distance sets.

© 2018 Elsevier Ltd. All rights reserved.

Throughout this paper we will consider only simple graphs, Rd will denote the d-dimensional
Euclidean space, Sn will denote the n-dimensional unit sphere in Rn+1, and dist(x, y) := ∥x − y∥
will denote the Euclidean distance in Rd. For a set X ⊂ Rd we shall denote the affine hull (or affine
span) by aff(X), rank(X) := dim aff(X) and conv(X) will denote the convex hull of X . We will denote
the cardinality of a finite set X by |X | .

1. Introduction

Representations (embeddings) of a graph G into a metric space, in particular into Rd, is a classical
discrete geometry problem (see [11, Ch. 6,19] and [10, Ch. 15,19]). The dimension ofG is the smallest d
for which it can be embedded inRd as a unit-distance graph [7]. In this paper we consider the smallest
d for which G can be embedded as a two-distance set.

Let G be a graph on n vertices. Consider a Euclidean representation of G in Rd as a two-distance set.
In other words, there are two positive real numbers a and b with b ≥ a > 0 and an embedding f of
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the vertex set of G into Rd such that

dist(f (u), f (v)) :=

{
a if uv is an edge of G
b otherwise

After Roy [24], the smallest d such thatG is representable inRd wewill call the Euclidean representation
number of G and denote it dimE

2(G).
Einhorn and Schoenberg [12] showed that dimE

2(G) can be found explicitly in terms of the
multiplicity µ(G) of the root τ1 of the discriminating polynomial (see Section 2).

Theorem 2.1. Let G be a graph with n vertices. Then

dimE
2(G) = n − µ(G) − 1.

In Section 3 we consider representations of G as spherical two-distance sets. Let f be a Euclidean
representation of G in Rd with the minimum distance a = 1. We say that f is spherical if the image
f (G) lies on a (d − 1)-sphere in Rd. We denote by dimS

2(G) the smallest d such that G is spherically
representable in Rd.

If d ≤ n − 2, then f is uniquely defined up to isometry (see Section 2). Therefore, if f is spherical,
then the circumradius of f (G) is also uniquely defined. We denote it by R(G). If f is not spherical or
µ(G) = 0, then we put R(G) = ∞ (Definition 3.2).

Theorem 3.1. Let G be a graph with n vertices. Then

dimS
2(G) =

{
dimE

2(G), R(G) < ∞;

n − 1, R(G) = ∞.

Nozaki and Shinohara [22] also give necessary and sufficient conditions of a Euclidean representa-
tion of G to be spherical. However, their conditions are more bulky. Namely, they used Roy’s theorem
(see [22, Theorem 2.4]) and they showed that among five types of conditions only three of them yields
sphericity [22, Theorem 3.7].

Nozaki and Shinohara also considered strongly regular graphs. For instance, they proved the
following interesting fact: a graph Gwith n vertices is strongly regular if and only if dimS

2(G)+dimS
2(Ḡ)+

1 = n [22, Theorem 4.5].
Theorem4.1 states thatR(G) ≥ 1/

√
2. In Section 4we consider the extreme caseR(G) = 1/

√
2. Let

f be a spherical representation of a graph G in Rd as a two-distance set. We say that f is a J-spherical
representation of G if the image f (G) lies in a sphere Sd−1 of radius 1/

√
2 and the first (minimum)

distance a = 1.
To prove the existence of J-spherical representations is not very easy. Corollary 4.1 states that for

any graph G ̸= Kn there is a unique (up to isometry) J-spherical representation. Then for a J-spherical
representation f : G → Rd the dimension d and second distance b are uniquely defined, we denote
these d and b by dimJ

2(G) and β∗(G) respectively.

Theorem 4.3. Let G ̸= Kn be a graph on n vertices. Then

dimJ
2(G) =

{
dimE

2(G), R(G) = 1/
√
2;

n − 1, R(G) > 1/
√
2.

In Section 5 we consider W. Kuperberg’s theorem on sets S in Sn−1 with n + 2 ≤ |S| ≤ 2n and the
minimum distance between points of S at least

√
2 [15]. Theorem 5.4 shows that S is the join of its

subsets Si. If S is a two-distance set, then S is a J-spherical representation.
Using results of Section 5, in Section 6 we give explicit formulas for representation numbers in the

case when G is the graph join: G = G1 + · · · + Gm. In particular, these formulas can be applied for the
complete multipartite graph Kn1...nm .

Theorem 6.2. Let G1, . . . ,Gm be a finite collection of graphs with n1, . . . , nm vertices respectively, let
G := G1 + · · · + Gm and n := n1 + · · · + nm. Suppose

β∗(G1) = · · · = β∗(Gk) < β∗(Gk+1) ≤ · · · ≤ β∗(Gm).
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Then

dimJ
2(G) = dimJ

2(G1) + · · · + dimJ
2(Gk) + nk+1 + · · · + nm,

dimS
2(G) = dimJ

2(G), dimE
2(G) = min(dimJ

2(G), n − 2).

Corollary 6.1. Let G be the complete multipartite graph Kn1...nm . Suppose

n1 = · · · = nk > nk+1 ≥ · · · ≥ nm

and let n := n1 + · · · + nm. Then

1. dimE
2(G) = min(n − k, n − 2);

2. dimS
2(G) = dimJ

2(G) = n − k.

Note that Statement 1 in Corollary 6.1 was first proved by Roy [24, Theorem 1].
In Section 7 we consider seven open problems on representations of graphs.

2. Euclidean representations of graphs

In this section we consider Euclidean representations of graphs as two-distance sets.
A complete graph Kn represents the vertices of a regular (n − 1)-simplex. In fact, this is a

representation of Kn as a one-distance set. Then dimE
2(Kn) = n − 1 and

dimE
2(G) ≤ n − 1

for any graph G with n vertices.
Thus we have a correspondence between graphs and two-distance sets. Let S be a two-distance set

in Rd with distances a and b ≥ a. Denote by Γ (S) a graph with S as the set vertices and edges [pq],
p, q ∈ S, such that dist(p, q) = a. Then S is a Euclidean representation of G = Γ (S).

Let S be a two-distance set of cardinality n in Rd. Then, see [3,8], we have

n ≤
(d + 1)(d + 2)

2
. (2.1)

(Lisoněk [16] shows that the upper bound (2.1) is tight for d = 8.) This bound implies the following
lower bound

dimE
2(G) ≥

√
8n + 1 − 3

2
.

LetGbe a graphwithn vertices. Einhorn and Schoenberg [12] considered Euclidean representations
of graphs. They proved that

dimE
2(G) = n − 1 if and only if G is a disjoint union of cliques.

Moreover, they have shown that
If dimE

2(G) ≤ n − 2, then a Euclidean representation of G in Rd, where d := dimE
2(G), is uniquely

defined up to isometry.
Let S = {p1, . . . , pn} be a two-distance set with distances a = 1 and b > 1. Let dij := dist(pi, pj).

Consider the Cayley–Menger determinant

CS :=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

0 1 1 . . . 1
1 0 d212 . . . d21n
1 d221 0 . . . d22n
. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

1 d2n1 d2n2 . . . 0

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
(2.2)

Since for i ̸= j, dij = 1 or b, CS is a polynomial in t = b2. Denote this polynomial by CG(t).
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Actually, in [12] instead of CG the discriminating polynomial D(t) is considered. This polynomial
can be defined through the Gram determinant. Since, see [6, Lemma 9.7.3.3],

CG(t) = (−1)nD(t)

these two polynomials are the same up to the sign and therefore have the same roots.

Definition 2.1. Let G be a graph with n vertices. Let τ1 = τ1(G) be the smallest root of CG(t),
i.e. CG(τ1) = 0, such that τ1 > 1. By µ(G) we denote the multiplicity of the root τ1(G) of CG. If all
roots t∗ ≤ 1, then we put τ1(G) = ∞ and µ(G) = 0.

Einhorn and Schoenberg proved that if S is embedded exactly in Rd, then τ1 is a root of CG(t) of
exact multiplicity n − d − 1 [12, Lemma 6]. Equivalently, we have the following theorem:

Theorem 2.1. Let G be a graph with n vertices. Then

dimE
2(G) = n − µ(G) − 1.

Roy [24] found that dimE
2(G) depends on certain eigenvalues of graphs. Actually, these dimensions

are closely related with the multiplicity of the smallest (or second smallest) eigenvalue of the
adjacency matrix A(G).

In [12,22,24] two Euclidean representation numbers dimE
2(G) and dimE

2(Ḡ) are considered , where
Ḡ is the graph complement of G. These numbers can be different. For instance, let G be the disjoint
union of m edges. Then dimE

2(G) = 2m − 1. On the other hand, Ḡ is the complete multipartite graph
K2,...,2. It follows from [12, Theorem 2] or [24, Theorem 1] (see also [2]) that

dimE
2(K2,...,2) = m.

Indeed, G = K2,...,2, then n = 2m and

CG(t) = 2m tm(2 − t)m−1.

Therefore τ1(G) = 2 and µ(G) = m − 1. Thus dimE
2(K2,...,2) = m.

Note that a minimal Euclidean representation of this graph is a regular m-dimensional cross-
polytope. In Section 6 we consider a geometric method for complete multipartite graphs.

There is an obvious relation between polynomials CG(t) and CḠ(t). Namely, CḠ(t) is the reciprocal
polynomial of CG(t). If G or Ḡ is not the complete multipartite graph, then τ0(G) := 1/τ1(Ḡ) is a root
of CG(t) and there are no more roots in the interval I := [τ0(G), τ1(G)]. Moreover, a two-distance set S
with distances 1 and

√
t is well-defined only if t ∈ I [12].

In fact, if dimE
2(G) ≤ n − 2, then a minimal Euclidean representation is unique up to isometry.

Indeed, in this case a = 1 and b =
√
τ1, then all distances between vertices in the representation are

known.
Using this approach Einhorn and Schoenberg [12] enumerated all two-distance sets in dimensions

two and three. In other words, they enumerated all graphs G with dimE
2(G) = 2 and dimE

2(G) = 3.
In [19] we state the same problem in four dimensions. Recently, Szöllösi [25] using a computer
enumeration of graphs solved this problem.

3. Spherical representations of graphs

Let f be a Euclidean representation of a graph Gwith n vertices in Rd as a two-distance set. We say
that f is a spherical representation of G if the image f (G) lies on a (d− 1)-sphere in Rd. We will call the
smallest d such that G is spherically representable in Rd the spherical representation number of G and
denote it dimS

2(G).
Representation numbers dimS

2(G) and dimE
2(G) can be different. In Section 6 we show that if G is a

bipartite graph Km,n with m ̸= n, then

dimE
2(Km,n) = n + m − 2 < dimS

2(Km,n) = n + m − 1.
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For a graph G on n vertices we obviously have

dimE
2(G) ≤ dimS

2(G) ≤ n − 1 (3.1)

Actually, for spherical representation numbers lower bound (2.1) can be a little bit improved.
Delsarte, Goethals, and Seidel [9] proved that the largest cardinality of spherical two-distance sets
in Rd is bounded by d(d + 3)/2. (This upper bound is known to be tight for d = 2, 6, 22.) That yields

dimS
2(G) ≥

√
8n + 9 − 3

2
.

This bound has been improved for some dimensions. Namely, in [18] we proved that

n ≤
d(d + 1)

2
(3.2)

for 6 < d < 22 and 23 < d < 40. This inequality was extended for almost all d ≤ 93 by Barg &
Yu [5] and for d ≤ 417 by Yu [26]. Recently, Glazyrin & Yu [13] proved (3.2) for all d ≥ 7 with possible
exceptions for some d = (2k + 1)2 − 3, k ∈ N.

Let S = {p1, . . . , pn} be a set in Rn−1. As above, dij := dist(pi, pj). Let

MS :=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
0 d212 . . . d21n
d221 0 . . . d22n
. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

d2n1 d2n2 . . . 0

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
(3.3)

It is well known [6, Proposition 9.7.3.7], that if the points in S form a simplex of dimension (n − 1),
then the radius R of the sphere circumscribed around this simplex is given by

R2
= −

1
2
MS

CS
. (3.4)

(Here CS is defined by (2.2).)

Definition 3.1. Let G be a graphwith vertices v1, . . . , vn. Put dij := 1 if [vivj] is an edge of G, otherwise
put dij := b. We denote by CG(t) and MG(t) the polynomials in t = b2 that are defined by (2.2) and
(3.3), respectively. Let

FG(t) := −
1
2
MG(t)
CG(t)

.

Lemma 3.1. Let S be a spherical representation of a graph G with distances a and b, b ≥ a. Then S lies on
a sphere of radius R =

√
a2FG(b2/a2).

Proof. If X = {x1, . . . , xn} is a set of points inRn−1 in general position, then rank(X) = n−1, conv(X) is
a simplex and (3.4) determines the circumradius R(X) of conv(X). Clearly, R(X) is a continuous function
in {xi}.

We have that rank(S) ≤ n−1. If rank(S) = n−1, then (3.4) implies the lemma, otherwise consider
a sequence of sets {Xk}, k ∈ N, in Rn−1 in general position such that S is a limit set of this sequence.
Thus, R(S) is the limit of {R(Xk)}, k ∈ N. □

As we noted above, if rank(S) < n − 1 and a = 1, then a spherical (and Euclidean) representation
of G is uniquely defined up to isometry. However, if rank(S) = n − 1, then there are infinitely many
non-isometric spherical representations. This is easy to see, let S be the set of vertices of a simplex in
which one of edges has length b ≥ 1 and all other edges are of lengths a = 1. It can be proved (see
the next section) that the range of R(S) is [1/

√
2,∞). This fact and Lemma 3.1 explain our definition

of the circumradius of G.
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Definition 3.2. If G is a graph with τ1(G) < ∞ and FG(τ1) < ∞, then denote

R(G) :=

√
FG(τ1).

Otherwise, put R(G) := ∞.

Theorem 3.1. Let G be a graph on n vertices. Then

dimS
2(G) =

{
dimE

2(G) if R(G) < ∞;

n − 1 if R(G) = ∞.

Proof. Denote by Iε a small interval [τ1 −ε, τ1 +ε] that does not contain any other roots of CG andMG.
Then for every t in Iε , t ̸= τ1, the Cayley–Menger determinant (2.2) is non-zero. Therefore, it defines
a Euclidean (spherical) representation ft of G in Rn−1. Let St := {ft (vi)}, where vi are the vertices of G.
Lemma 3.1 implies that FG(t) = R2(t),where R(t) is the radius of the sphere circumscribed about St .

From (3.1) it follows that dimE
2(G) = n − 1 yields dimS

2(G) = n − 1. If dimE
2(G) ≤ n − 2, then

µ(G) ≥ 1. Therefore, for t = τ1, Theorem 2.1 implies that St is embedded into Rn−µ−1.
Suppose dimS

2(G) ≤ n−2. Then (3.1) implies that dimE
2(G) ≤ n−2. In this case aminimal spherical

representation of G is uniquely defined by τ1 and Sτ1 is a spherical set that lies on a sphere of radius
ρ > 0. Then R(t) and FG(t) are continuous functions in t that are well defined for all t in Iε and
FG(τ1) = ρ2. It is easy to see that the inequality FG(τ1) > 0 yields that the multiplicities of τ1 in
CG andMG are equal. Thus, we have dimS

2(G) = dimE
2(G). □

4. J-spherical representation of graphs

In this sectionwe prove thatR(G) ≥ 1/
√
2 and thenwe consider the boundary caseR(G) = 1/

√
2.

For a proof of the next theorem we need Rankin’s theorem. Rankin [23] proved that If S is a set of
d + k, k ≥ 2, points in the unit sphere Sd−1 in Rd, then two of the points in S are at a distance of at most√
2 from each other.

Theorem 4.1. R(G) ≥ 1/
√
2.

Proof. Let G be a graph on n vertices. By the definition if dimS
2(G) = n − 1, then R(G) = ∞.

Let S be aminimal spherical representation ofG. If dimS
2(G) ≤ n−2, then S lies in a sphereΩ inRn−2

of radius R. By Rankin’s theorem if d+2 points lie in a sphere of radius R inRd, then a ratio a/R ≤
√
2,

where a is the minimum distance between these points. Since a = 1, we haveR(G) = R ≥ 1/
√
2. □

Hence we have a two-distance set X with distances a = 1 and b > a such that the circumradius of
X is 1/

√
2. Actually, we will consider a set S that is similar to X with the scale factor

√
2. Therefore, S

is a two-distance set with the first distance a =
√
2 that can be inscribed in the unit sphere.

Definition 4.1. Let f be a spherical representation of a graph G in Rd as a two distance set. We say
that f is a J-spherical representation of G if the image f (G) lies in the unit sphere Sd−1 and the first
(minimum) distance a =

√
2.

The existence of Euclidean and spherical representations for any graph G is obvious. However, to
prove it for J-spherical representations is not very easy. Clearly, if G is a complete graph Kn, then this
representation does not exist. We show that this is just one exceptional case, and for every other G
there is a J-spherical representation.

Notation. Let G be a graph on n vertices.
IG :=

(√
2,

√
2τ1(G)

)
.

SG(x): a two-distance set S in Rn−1 with distances a =
√
2 and b = x such that Γ (S) = G.

(Here, as above, Γ (S) is the graph with edges of length a.)
∆G(x) := convSG(x).
ΦG(x): the radius of the minimum enclosing ball of SG(x) in Rn−1.
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Lemma 4.1. If x ∈ IG, then rankSG(x) = n − 1.

Proof. Since the Cayley–Menger determinant and the volume of a simplex are equal up to a constant
and CG(x2/2) ̸= 0 for x ∈ IG, we have that ∆G(x) is a simplex in Rn−1 of dimension n − 1. Thus,
rankSG(x) = dim∆G(x) = n − 1. □

Lemma 4.2. The functionΦG(x) is increasing on IG.

Proof. The proof relies on the Kirszbraun theorem (see [1,14])1:
Let X be a subset of Rd and f : X → Rm be a Lipschitz function. Then f can be extended to the

whole Rd keeping the Lipschitz constant of the original function.
Let

√
2 ≤ y1 < y2 <

√
2τ1(G). Then by Lemma 4.1 SG(yi) = {vi1, . . . , vin} is the set of vertices of

an (n − 1)-simplex∆G(yi) that lies in the minimum enclosing ball B(yi) of radiusΦG(yi).
Let

h(v2k) := v1k, k = 1, . . . , n.

Then we have h : SG(y2) → Rn−1. It is clear that the Lipschitz constant of h is equal to 1. By the
Kirszbraun theorem h can be extended to H : Rn−1

→ Rn−1 with the same Lipschitz constant.
Let c2 be the center of B(y2). For all k = 1, . . . , nwe have

dist(H(c2),H(v2k)) = dist(H(c2), v1k) ≤ dist(c2, v2k) ≤ ΦG(y2).

Therefore, H(c2) is a point in ∆G(y1) such that all distances from H(c2) to vertices SG(y1) does not
exceedΦG(y2). ThenΦG(y1) ≤ ΦG(y2). □

Lemma 4.3. Let S be a set in Rn−1 of cardinality |S| ≥ n. Suppose the minimum distance between points
of S is at least

√
2. If S lies in a sphere of radius R ≤ 1, then sphere’s center O ∈ conv(S).

Proof. Assume the converse. Then S lies in an open hemisphere of radius R. It can be proved (see
[17, Theorem 3] or [4, Theorem 5]) that the assumptions yield |S| < n, a contradiction. □

Theorem 4.2. Let G be a graph with n vertices. Let R :
√
(n − 1)/n < R ≤ 1. Suppose G ̸= Kn, then there

is a unique x ∈ IG such that SG(x) lies on a sphere of radius R.

Proof. Let b1 :=
√
2τ1(G). First we prove that there is a solution of the equation ΦG(x) = R. Namely,

we are going to prove that

ΦG(
√
2) =

√
(n − 1)/n ≤ R ≤ 1 ≤ ΦG(b1).

Indeed, it is clear thatΦG(
√
2) is the circumradius of a regular (n − 1)-simplex, of side length

√
2.

Then

ΦG(
√
2) =

n − 1
n

.

Now we show that ΦG(b1) ≥ 1. In the case b1 = ∞, it is clear that ΦG(x) approaches ∞ as x
approaches ∞.

Let b1 < ∞. Then the Cayley–Menger determinant vanishes and SG(b1) embeds in Rd, where
d ≤ n − 2. By Theorem 4.1,

√
2R(G) ≥ 1. Therefore, ifΦG(x) < 1, then x < b1.

(Equivalently, we have n ≥ d+ 2 points with the minimum distance
√
2 in a ball of radiusΦG(b1).

By Rankin’s theorem [23] it is possible only if the radiusΦG(b1) ≥ 1.)
ThereforeΦG(b) = R for some b ∈ [

√
2, b1].

Now we show that for x ∈ [
√
2, b1] a solution of the equation ΦG(x) = R is unique. By Lemma 4.2

ΦG(x) is increasing whenever x is increasing. However, we did not prove that ΦG(x) is a strictly

1 The author thanks Arseniy Akopyan for the idea of this proof.
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increasing function. Suppose P(y1) = R and P(y2) = R, where y1 < y2. Then ΦG(x) is a constant
on the interval [y1, y2]. Lemma 4.3 yields that for x ∈ [y1, y2] the circumcenter of a simplex∆G(x) lies
in this simplex.

It is well known that if the circumcenter of a simplex∆ is an internal point of∆, then theminimum
enclosing sphere is the circumsphere of∆. Therefore, for this case we have

ΦG(x) =

√
2FG(t), t =

x2

2
.

ThenΦ2
G(x) is a rational function in x2. It implies thatΦG(x) cannot be a constant in [y1, y2].

Note that the case of an empty graph, i.e. G = K̄1,...,1, is well-defined. If R = 1, then

b∗ =

√
2n

n − 1
>

√
2

and SG(b(1)) is the set of vertices of a regular (n − 1)-simplex of side length b. (In this case there are
no edges of length a =

√
2.) If for R < 1 we take b = Rb∗, then it will be a unique solution of the

equationΦG(x) = R. □

This theorem for R = 1 yields the following

Corollary 4.1. For every graph G ̸= Kn there is a unique (up to isometry) J-spherical representation.

The uniqueness of a J-spherical representation shows that the following definition is correct.

Definition 4.2. Let f : G → Rd be a J-spherical representation of G. We denote the image f (G) byWG
and the dimension d by dimJ

2(G). Denote the second distance ofWG by β∗(G).

Representation numbers dimJ
2(G) and dimS

2(G) can be different. For instance, if G is the pentagon,
then

dimS
2(G) = 2 < dimJ

2(G) = 4.

Note that dimJ
2(G) < n − 1 only if β∗(G) =

√
2 τ1(G). Moreover, since the circumradius of WG is 1,

we have to have R(G) = 1/
√
2. That yields the following theorem.

Theorem 4.3. Let G ̸= Kn be a graph on n vertices. Then

dimJ
2(G) =

{
dimE

2(G), R(G) = 1/
√
2;

n − 1, R(G) > 1/
√
2.

Rankin’s theorem and Theorem 4.3 yield

Corollary 4.2. Let G be a graph on n vertices and G ̸= Kn. Then
n
2

≤ dimJ
2(G) ≤ n − 1.

If dimJ
2(G) = n/2, then G = K2,...,2 and a J-spherical representation of G is a regular cross-polytope.

5. The join of sets and Kuperberg’s theorem

5.1. W. Kuperberg’s theorem.

As we noted above, Rankin’s theorem states that if S is a subset of Sd−1 with |S| ≥ d + 2, then the
minimumdistance between points in S is atmost

√
2.Wlodzimierz Kuperberg [15] extended Rankin’s

theorem and proved that:
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Theorem 5.1. Let d and k be integers such that 2 ≤ k ≤ d. If S is a (d + k)-point subset of the unit
d-ball such that the minimum distance between points is at least

√
2, then: (1) every point of S lies on

the boundary of the ball, and (2) Rd splits into the orthogonal product
∏k

i=1Li of nondegenerate linear
subspaces Li such that for Si := S ∩ Li we have |Si| = di + 1 and rank(Si) = di (i = 1, 2, . . . , k), where
di := dim Li.

In fact, this theorem states that S is join-decomposable.

Definition 5.1. The join X ∗ Y of two sets X ⊂ Rm and Y ⊂ Rn is formed in the following manner.
Embed X in the m-dimensional linear subspace of Rm+n as

{(x1, . . . , xm, 0, . . . , 0) : x = (x1, . . . , xm) ∈ X}

and embed Y as

{(0, . . . , 0, y1, . . . , yn) : y ∈ Y }.

Geometrically the join corresponds to putting the two sets X and Y in orthogonal linear subspaces
of Rm+n. Hence Kuperberg’s theorem implies that S = S1 ∗ · · · ∗ Sk.

Actually, Kuperberg’s proof of Theorem 5.1 yields that conv(Si) contains the center O of the unit
d-ball. This statement also follows from Lemma 4.3

Let conv(S) be a d-dimensional simplex, i.e. rank(S) = d. We have two cases:
(i) O lies in the interior of conv(S);
(ii) O lies on the boundary of conv(S).
It is clear, that in Case (i) S is join-indecomposable. Consider Case (ii). Let S1 be aminimal subset of

S among such subsets whose convex hull contains O. Then [15, Proposition 6] yields that S2 := S \ S1
lies in the orthogonal complement of aff(S1), i.e. S = S1 ∗ S2.

Lemma 5.1. Let S be a subset of Sd−1 with |S| ≥ d + 1 such that the minimum distance between points
of S is at least

√
2. Suppose O lies on the boundary of conv(S). Then S is join-decomposable.

This lemma shows that there are two types of join-indecomposable spherical sets.
Type I: S ⊂ Sd−1, |S| = d + 1, rank(S) = d and the center O of Sd−1 lies in the interior of conv(S).
Type II: S ⊂ Sd−1, |S| = d, rank(S) = d − 1 and O ̸∈ aff(S).

Consider an example, let S consist of three vertices of an isosceles right triangle in the unit circle,
for instance, S = {p1.p2, p3}, p1 = (1, 0), p2 = (−1, 0) and p3 = (0, 1). Then S = S ′

∗ S ′′, where
S ′

:= {p1, p2} and S ′′
:= {p3}. Here S ′ is of Type 1 and S ′′ is of Type 2.

Lemma 5.1 says that if O lies in the boundary of Si then Si = S ′

i ∗ S ′′

i . It yields the following version
of Kuperberg’s theorem.

Theorem 5.2. Let S be a subset of the unit d-ball inRd with the minimum distance between points at least√
2. Suppose |S| = d+ k with 2 ≤ k ≤ d. Then S = S1 ∗ · · · ∗ Sm, where Si, i = 1, . . . , k are of Type I and

all other Si are of Type II.

5.2. The join of spherical two-distance sets

Definition 5.2. We say that a two-distance set S in Rd is a J-spherical two-distance set (JSTD) if S lies
in the unit sphere centered at the origin 0 and a =

√
2. For this S the second distance bwill be denoted

b(S).

The next two lemmas immediately follow from definitions.

Lemma5.2. Let S1 and S2 be spherical two-distance setswith the same distances a and b ≥ a. Let Ri denote
the circumradius of Si. Then (1) the join S1 ∗ S2 is spherical if R1 = R2 and (2) the join is a two-distance
set only if R2

1 + R2
2 = a2 or R2

1 + R2
2 = b2.

Lemma 5.3. Let S1 and S2 be JSTD sets with b(S1) = b(S2). Then the join S1 ∗ S2 is a JSTD set.
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Lemma 5.4. Suppose for sets X1 and X2 in Rd there is positive ρ such that dist(p1, p2) = ρ for all points
p1 ∈ X1, p2 ∈ X2. Then both Xi are spherical sets and the affine hulls aff(Xi) in Rd are orthogonal each
other. If additionally rank(X1 ∪ 0) + rank(X2 ∪ 0) = rank(X1 ∪ X2 ∪ 0), then X1 ∪ X2 = X1 ∗ X2, where 0
denote the origin of Rd.

Proof. 1. If p ∈ X1, thenby assumptionX2 lies on a sphere Sρ(p) of radiusρ and centered at p. Therefore,
X2 belongs to a sphere that is the intersection of all Sρ(p), where p ∈ X1.

2. Let p1, p2 ∈ X1 and q1, q2 ∈ X2. Since in the tetrahedron p1p2q1q2 four sides piqj have the same
length ρ, the edges p1p2 and q1q2 are orthogonal. That implies the orthogonality of the affine spans
aff(X1) and aff(X2) in Rd.

3. Let Li := aff(Xi∪0). Then dim Li = rank(Xi∪0). By assumption L1∩L2 = 0. Thus, the orthogonality
of aff(Xi) yields X1 ∪ X2 = X1 ∗ X2. □

Theorem 5.3. Let S1 and S2 be JSTD sets inRd. Then S := S1 ∪ S2 is a JSTD set and S = S1 ∗ S2 if and only if
(1) dist(p1, p2) are the same for all points p1 ∈ S1, p2 ∈ S2; (2) rank(S ∪0) = rank(S1 ∪0)+ rank(S2 ∪0)
and (3) b(S1) = b(S2).

Proof. By Lemma 5.4, (1) and (2) imply that S = S1 ∗ S2. Since R1 = R2 = 1, from Lemma 5.2 we have
dist(p1, p2) =

√
2. Finally, Lemma 5.3 yields that S is JSDT. □

5.3. Kuperberg type theorem for two-distance sets

Definition 5.3. Let S be a two-distance set.We say that S is J-prime if S is indecomposablewith respect
to the join.

It is easy to see that J-prime sets can be defined in another way.

Proposition 5.1. Let S be a two-distance set. Let G = Γ (S). Then S is J-prime if and only if the graph
complement Ḡ is connected.

From Theorem 5.2 we know that any J-prime set is of Type I or Type II. If S is of Type I in Rd, then S
is a JSTD of rank d and cardinality d + 1. Therefore if we take G = Γ (S), then we obtain S = WG. Note
that the inequality β∗(G) <

√
τ1(G) implies that dimJ

2(G) = d, where G is a graph on d + 1 vertices.
We proved the following:

Lemma 5.5. Let S be a J-prime JSTD set of Type I. Then b(S) = β∗(G) <
√
τ1(G), where G := Γ (S).

If S is of Type II in Rd, then S is a JSDT set of cardinality d. For instance, if S = {p, q} is a two-points
set in the unit circle with

√
2 < b = dist(p, q) < 2, then S is J-prime of Type II. Hence in this case the

second distance b is not fixed and lies in some open interval.
Let S be a JSDT set in Rd of cardinality d + k, where 2 ≤ k ≤ d. For this S Theorem 5.2 states that

there are exactly k subsets Si of Type I. Now if we take S1 of Type I and S2 of Type II then S1 ∗ S2 is a
JSDT set. From Lemma 5.3 follows that b(S1) = b(S2). Moreover, for S2 we have an extra constraint:
this set lies in a (d − 2)-sphere of radius R < 1.

Lemma 5.6. A JSTD set S in Rd, d = |S| − 2, is a J-prime set of Type II only if b(S) < β∗(G) <
√
τ1(G),

where G := Γ (S).

Proof. The assumption b(S) < β∗(G) is equivalent to R < 1, where R is the circumradius of S. By
Theorem 4.2, there is a unique b such that a two-distance set S with a =

√
2 lies in a sphere of

radius R. □

Theorem 5.2 implies the following theorem.

Theorem 5.4. Let S, |S| = d+ k, k ≥ 1, be a two-distance set in the unit sphere in Rd with the minimum
distance a =

√
2. Then S = S1 ∗ · · · ∗ Sm such that all subsets Si are J-prime and exactly k of them are of

Type I.
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6. Representation numbers of the join of graphs

Recall that the join G = G1 + G2 of graphs G1 and G2 with disjoint point sets V1 and V2 and edge
sets E1 and E2 is the graph union G1 ∪G2 together with the edges joining each point of V1 to each point
of V2. In this section we apply results of Section 5 for the join of graphs.

The following theorem is a version of Theorem 5.4.

Theorem 6.1. Let G be a graph with n vertices. Let dimJ
2(G) = n − k ≤ n − 2. Then G = G1 + · · · + Gm,

where all Gi are indecomposable with respect to the join and

β∗(G) = β∗(G1) = · · · = β∗(Gk) < β∗(Gk+1) ≤ · · · ≤ β∗(Gm).

Proof. Let S be a J-spherical representation of G. Then S satisfies the assumptions of Theorem 5.4.
Therefore S = S1 ∗ · · · ∗ Sm. Let S1, . . . , Sk be sets of Type I. Thus subgraphs Gi := Γ (Si) are as
required. □

Theorem 6.2. Let G1, . . . ,Gq be a finite collection of graphs with n1, . . . , nq vertices, respectively. Let
G := G1 + · · · + Gq and n := n1 + · · · + nq. Suppose

β∗(G1) = · · · = β∗(Gp) < β∗(Gp+1) ≤ · · · ≤ β∗(Gq).

Then

dimJ
2(G) = dimJ

2(G1) + · · · + dimJ
2(Gp) + np+1 + · · · + nq,

dimS
2(G) = dimJ

2(G), dimE
2(G) = min(dimJ

2(G), n − 2).

Proof. By Theorem 6.1 there are graphs F1, . . . , Fm indecomposable with respect to the join and such
that G := F1 + · · · + Fm, k := k1 + · · · + kp, where ki := ni − dimJ

2(Gi), and

β∗(F1) = · · · = β∗(Fk) < β∗(Fk+1) ≤ · · · ≤ β∗(Fm).

Let Si := WFi , i = 1, . . . , k. For i > k, denote by Si a sets of Type IIwithΓ (Si) = Fi and b(Si) = β∗(F1).
Then let S = S1 ∗ · · · ∗ Sm be a J-spherical representation of G. It is clear that rank(S) = n − k.

If k ≥ 2, then dimJ
2(G) ≤ rank(S) ≤ n − 2. In this case Lemma 5.2, Theorem 3.1 and Theorem 4.3

yield

dimE
2(G) = dimS

2(G) = dimJ
2(G) = n − k = dimJ

2(G1) + · · · + dimJ
2(Gp) + np+1 + · · · + nq.

Now consider the case dimJ
2(G) = n − 1 or, equivalently, k = 1. Let H := F2 + · · · + Fm. Note that

β∗(F1) < β∗(H) = β∗(F2).
Since G is not a disjoint union of cliques, dimE

2(G) ≤ n − 2. Therefore, a Euclidean representation
f : G = F1 + H → Rn−2 is unique. Let X1 := f (F1) and X2 := f (H). From Lemma 5.4 it follows that X1
and X2 are spherical orthogonal sets. Moreover, by Lemma 5.2we have R2

1+R2
2 = a2, where Ri denotes

the circumradius of Xi.
First note that R1 ̸= R2, otherwise X and Y would be JSTD sets with dimE

2(G) = dimJ
2(G) = n − 1.

Hence f would not be a spherical representation and dimS
2(G) = n − 1.

Note that R1 > R2. Indeed, it follows from the fact that b(X1) = b(X2), but β∗(F1) < β∗(H). Since
b(X2) < β∗(H), we have rank(X2) = vH − 1, where vH denotes the number of vertices of H . Thus
dimE

2(G) = rank(X1 ∪ X2) = v1 − 1 + vH − 1 = n − 2. □

Corollary 6.1. Let G be the complete multipartite graph Kn1...nm and n := n1 + · · · + nm. Suppose

n1 = · · · = nk > nk+1 ≥ · · · ≥ nm.

Then

dimS
2(G) = dimJ

2(G) = n − k, dimE
2(G) = min(n − k, n − 2)
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Proof. Note that

Kn1...nm = K̄n1 + · · · + K̄nm .

Since

β∗(K̄n) =

√
2n

n − 1
,

our assumption is equivalent to

β∗(K̄n1 ) = · · · = β∗(K̄nk ) < β∗(K̄nk+1 ) ≤ · · · ≤ β∗(K̄nm ).

Thus, this corollary follows from Theorem 6.2 and the obvious fact that the empty graph K̄ℓ is
indecomposable with respect to the join, i.e. dimJ

2(K̄ℓ) = ℓ− 1. □

7. Concluding remarks and open problems

First we consider open problems that are directly related to this paper.

7.1. Range of the circumradius R(G)

Let R(G) < ∞. What is the range of R(G)? Since for a fixed n there are finitely many graphs G this
range is a countable subset of the interval [1/

√
2,∞).

What is the maximum value of R(G)? Can R(G) be greater than 1?

7.2. Monotonicity and convexity of the function FG(t)

Lemma 4.2 states that the functionΦG(x) is increasing on IG. If the circumcenter of a simplex∆G(x)
lies in this simplex, then its circumradius and the radius of the minimum enclosing sphere are the
same, i.e. FG(t) = Φ2

G(x), x =
√
2t . Therefore, under this constraint FG(t) is monotonic. Our conjecture

is:
FG(t) is a monotonic increasing function for all t ∈ (1, τ1(G)).

Moreover, we think that
FG(t) is convex on the interval (1, τ1(G)).

7.3. The second distance β∗(G)

There are two interesting questions about β∗(G):
(1) What is the range of β∗(G)?
(2) Can β∗(G1) = β∗(G2) for distinct G1 and G2?

For the second question the answer is positive. Let σ be a collection of positive integers n1, . . . , nm
withm > 1. We denote

|σ | := n1 + · · · + nm.

Let K̄σ := K̄n1,...,nm , where K̄n1,...,nm is the graph complement of the completem-partite graph Kn1,...,nm .
In other words, K̄σ is the disjoint union of cliques of sizes n1, . . . , nm.

Einhorn and Schoenberg [12] proved that

dimE
2(K̄σ ) = |σ | − 1.

Moreover, the converse statement is also true. If for a graph G on n vertices we have dimE
2(G) = n− 1,

then G is K̄σ for some σ with |σ | = n.
Let σ1 = (1, 1, 1), σ2 = (2, 2) and σ3 = (1, 4). Then β∗(σi) =

√
3 for i = 1, 2, 3.

Another example,

σ = (1, 1, 1, 1, 1), (2, 2, 2), (4, 4), (2, 8), (1, 16).

For all these collections β∗(σ ) =
√
5/2.

It is an interesting problem to describe sets of collections σ with the same β∗(σ ).



O.R. Musin / European Journal of Combinatorics 80 (2019) 311–325 323

7.4. Sets of Type II

In Section 4we consider join-indecomposable spherical sets of Type I and II. Note that if we remove
a point froma J-prime set of Type I, thenwe obtain a set of Type II. It is not clear canweuse thismethod
to obtain all sets of Type II? In other words,

Is it true that any J-prime set of Type II is a subset of a set of Type I?
Now we consider generalizations of graph representations.

7.5. Spherical representations with R(G) ≤ R0

Let f be a spherical representation of a graph G on n vertices inRd as a two-distance set with a = 1
and b > a. Let R0 be a positive real number. We say that f is a minimal spherical representations with
R(G) ≤ R0 if the image f (G) lies in a sphere of radius R ≤ R0 with the smallest d. If G ̸= Kn, then
Theorem 4.2 yields the existence of such representations with d ≤ n − 1. We denote the minimum
dimension d by dimS

2(G, R0).
Note that dimS

2(G, 1/
√
2) = dimJ

2(G). It is easy to see that for R0 ≥ 1/
√
2 we have

dimJ
2(G) ≥ dimS

2(G, R0) ≥ dimS
2(G).

The following theorem can be proved by the same arguments as in the proof of Theorem 4.3.

Theorem 7.1. Let G ̸= Kn be a graph on n vertices. Let R0 ≥ 1/
√
2. If R(G) ≤ R0, then

dimS
2(G, R0) = n − µ(G) − 1, otherwise dimS

2(G, R0) = n − 1.

Since in Theorem4.3we have dimJ
2(G) = dimS

2(G) this theorem also holds for dimS
2(G, R0). Consider

interesting problem: Find families of graphs G with dimS
2(G, R0) = dimS

2(G).
Another interesting question is to find the minimum R0 such that dimS

2(G, R0) = dimS
2(G) for all G.

In particular, is it true that this equality holds for R0 = 1? (See Section 7.1.)

7.6. Representations of colored E(Kn) as s-distance sets

First consider an equivalent definition of graph representations. Let G = (V (G), E(G)) be a graph
on n vertices. We have E(Kn) = E(G) ∪ E(Ḡ). Then it is can be considered as a coloring of E(Kn) in two
colors. Hence

E(Kn) = E1 ∪ E2, where E1 ∩ E2 = ∅.

Clearly, G is uniquely defined by the equation E(G) = E1.
Let L(e) := i if e ∈ Ei. Then L : E(Kn) → {1, 2} is a coloring of E(Kn). A representation L as a

two-distance set is an embedding f of V (Kn) into Rd such that dist(f (u), f (v))) = ai for [uv] ∈ Ei. Here
a2 ≥ a1 > 0.

This definition can be extended to any number of colors. Let L : E(Kn) → {1, . . . , s} be a coloring
of the set of edges of a complete graph Kn. Then

E(Kn) = E1 ∪ · · · ∪ Es, Ei := {e ∈ E(Kn) : L(e) = i}.

We say that an embedding f of the vertex set of Kn intoRd is a Euclidean representation of a coloring L in
Rd as an s-distance set if there are s positive real numbers a1 ≤ · · · ≤ as such that dist(f (u), f (v))) = ai
if and only if [uv] ∈ Ei.

It is easy to extend the definitions of polynomials CG(t) and MG(t) for s-distance sets. In this case
we have multivariate polynomials CL(t2, . . . , ts) and ML(t2, . . . , ts), where a1 = 1 and ti = a2i for
i = 2, . . . , s. It is clear that a Euclidean representation of L is spherical only if FL(t2, . . . , ts) is well
defined, where

FL(t2, . . . , ts) := −
1
2
ML(t2, . . . , ts)
CL(t2, . . . , ts)

.

We think that the Einhorn–Schoenberg theorem and several results from this paper can be
generalized for representations of colorings L as s-distance sets.
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7.7. Contact graph representations of G

The famous circle packing theorem (also known as the Koebe–Andreev–Thurston theorem) states
that for every connected simple planar graph G there is a circle packing in the plane whose contact
graph is isomorphic to G. Now consider representations of a graph G as the contact graph of a packing
of congruent spheres in Rd. Equivalently, the contact graph can be defined in the following way.

Let X be a finite subset of Rd. Denote

ψ(X) := min
x,y∈X

{dist(x, y)}, where x ̸= y.

The contact graph CG(X) is a graph with vertices in X and edges (x, y), x, y ∈ X , such that dist(x, y) =

ψ(X). In otherwords, CG(X) is the contact graph of a packing of spheres of diameterψ(X) with centers
in X .

Let a graph G = (V , E) on n vertices have at least one edge. Let f be a Euclidean representation of
vertices of G in Rd. We say that f with minimum d is aminimal Euclidean contact graph representation
if G is isomorphic to CG(X), where X = f (V ). If X lies on a sphere then we call f a minimal spherical
contact graph representation.

There are several combinatorial properties of contact graphs, see the survey paper [7]. For instance,
the degree of any vertex of CG(X), X ⊂ Rd, is not to exceed the kissing number kd. For spherical contact
graph representations inS2 this degree is not greater than five. Using this andother properties of CG(X)
we enumerated spherical irreducible contact graphs for n ≤ 11 [20,21].

It is an interesting problem to find minimal dimensions of Euclidean and spherical contact graph
representations of graphs G.
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