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Abstract. In this paper we consider generalizations to higher dimensions
of classical results on chains of tangent spheres.
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1. Introduction. Suppose we have a chain of k circles all of which are tangent
to two given non-intersecting circles S1, S2, and each circle in the chain is
tangent to the previous and next circles in the chain. Then, any other circle
C that is tangent to S1 and S2 along the same bisector is also part of a
similar chain of k circles. This fact is known as Steiner’s porism [1, Chap. 7],
[10, Chap. 4, 5]. The usual proof of this is simply to choose an inversion
that makes S1 and S2 concentric, after which the result follows immediately
by rotation symmetry. (Below are shown two closed Steiner chains and the
inversion transform to a chain of congruent circles.)

Soddy’s hexlet is a chain of six spheres each of which is tangent to both
of its neighbors and also to three mutually tangent given spheres. Frederick
Soddy published the following theorem in 1937 [11]: “It is always possible
to find a hexlet for any choice of three mutually tangent spheres.” Note that
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Soddy’s hexlet was also discovered independently in Japan, as shown by San-
gaku tablets from 1822 in the Kanagawa prefecture [9].

The general problem of finding a hexlet for three given mutually tangent
spheres S1, S2, and S3 can be reduced to the annular case using inversion.
Inversion in the point of tangency between spheres S1 and S2 transforms them
into parallel planes P1 and P2. Since sphere S3 is tangent to both S1 and
S2 and does not pass through the center of inversion, S3 is transformed into
another sphere S′

3 that is tangent to both planes. Six spheres may be packed
around S′

3 and touch planes P1 and P2. Re-inversion restores the three original
spheres, and transforms these six spheres into a hexlet for the original problem
[1,10].

S1

S2

P1

P2

Let F := {S1, S2}, where S1 and S2 are tangent spheres in R
n. Let Πn(F)

denote the set of all (non-congruent) sphere packings in R
n such that all

spheres in a packing P ∈ Πn(F) are tangent to both spheres from F . In
[7] the authors report that there is an unpublished result by Kirkpatrick and
Rote about this case. In fact, they proved that

There is a one-to-one correspondence TF between sphere packings from
Πn(F) and unit sphere packings in R

n−1.
It is easy to prove. Indeed, let TF be an inversion in the point of tangency
between spheres from F such that it makes S1 and S2 parallel hyperplanes
with the distance between them equals 2. Then the result follows immediately
by the fact that a packing P ∈ Πn(F) transforms to a unit sphere packing
TF (P ). ([7, Proposition 4.5] contains a sketch of proof.)

Let X be a set of points in a unit sphere S
d−1. We say that X is a spherical

ψ-code if the angular distance between distinct points in X is at least ψ. Denote
by A(d, ψ) the maximal size of a ψ-code in S

d−1 [5].
Note that A(d, π/3) = k(d), where by k(d) we denote the kissing number,

i.e. the maximum number of non-overlapping unit spheres in R
d that can be

arranged so that all of them touch one (central) unit sphere.
In this paper we show a relation between sphere packings in R

n that are
tangent spheres in a given family F and spherical codes (Theorem 2.3). This
relation gives generalizations of Steiner’s porism and Soddy’s hexlet to higher
dimensions.

2. F -Kissing arrangements and spherical codes. Here we say that two distinct
spheres S1 and S2 in R

n are non-intersecting if the intersection of these spheres
is not a sphere of radius r > 0. In other words, either S1 ∩ S2 = ∅ or these
spheres touch each other.
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Definition 2.1. Let F = {S1, . . . , Sm} be a family of m arbitrary spheres in
R

n. (Actually, Si can be a sphere of any radius or a hyperplane.) We say that
a set C of spheres in R

n is an F-kissing arrangement if
(1) each sphere from C is tangent to all spheres from F ;
(2) each sphere from C is tangent to at least one sphere from C;
(3) any two distinct spheres from C are non-intersecting.

It is clear that if C is nonempty and one of spheres from F contains another,
then all Si as well as all spheres from C lie in this sphere. If there are no such
sphere in F , then depending on radii and arrangements of Si either one of
spheres from C contains all other from C and F or all spheres in C are non-
overlapping.

Definition 2.2. Let F = {S1, . . . , Sm}, m ≥ 2, be a family of m spheres in R
n.

We say that F is an S-family if
(1) S1 and S2 are non-intersecting spheres;
(2) each Si with i > 2 can intersect at most one Sj with j = 1, 2;
(3) there are non-empty F-kissing arrangements and all of them are finite.

Remark. I wish to thank the anonymous referee of this paper who pointed
out that if Definition 2.2 has only assumptions (1) and (3), then F-kissing
arrangements are possible can have spheres that touch some spheres in F
from the outside and some from the inside.

Consider the following example. Let F := {S1, S2, S3}, where S1 and S2 be
two concentric spheres (or two parallel hyperplanes) in R

n. Let S3 be a sphere
that intersects S1 and S2. Then for some cases there are F-kissing spheres
such that some of them are tangent to S3 from the outside and some from the
inside.

However, if we have (2), then there is at most one sphere that is tangent
to S1, S2, and S3 from the inside. Indeed, suppose S3 intersects S1. Then
Definition 2.2(2) yields that S3 either has no common points with S2 or S3 is
tangent to S2 at some point p. In the first case there are no F-kissing spheres
that are tangent to S3 from the inside. It is easy to see that in the second
case we can have at most one sphere that is tangent to S2 and S3 at p. By
Definition 2.1(2) this sphere cannot be a sphere in the F-kissing arrangement.

Note that in Steiner’s chain problem, F consists of two non-intersecting
circles S1 and S2, and in the problem of finding a hexlet, F consists of three
mutually tangent spheres S1, S2, and S3. Now we consider a general case.

Theorem 2.3. Let F = {S1, . . . , Sm}, 2 ≤ m < n + 2, be an S-family of
m spheres in R

n. Then there is a one-to-one correspondence ΦF between F-
kissing arrangements and spherical ψF -codes in S

d−1, where d := n + 2 − m
and the value ψF is uniquely defined by the family F .

Proof. There are two cases: (i) S1 and S2 are tangent or (ii) S1 and S2 do not
touch each other. In the first case let O be the contact point of these spheres
and if we apply the sphere inversion T with center O and an arbitrary radius
ρ, then S1 and S2 become two parallel hyperplanes S′

1 and S′
2. In case (ii) we
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can use the famous theorem: It is always possible to invert S1 and S2 into a
pair of concentric spheres S′

1 and S′
2 (see [10, Theorem 13]).

Let P be an F-kissing arrangement. Since all spheres from P touch S1 and
S2 after the inversion, they become spheres that touch S′

1 and S′
2. In both

cases that yields that all spheres from P ′ := T (P ) are congruent. Without
loss of generality, we can assume that spheres from P ′ are unit. Thus we have
a unit sphere packing P ′ = {C ′

j} in R
n such that each sphere C ′

j from P ′ is
tangent to all S′

i := T (Si), i = 1, . . . ,m.
In case (i) denote by Z0 the hyperplane of symmetry of S′

1 and S′
2 and in

case (ii) Z0 be a sphere of radius (r1 + r2)/2 that is concentric with S′
1 and

S′
2, where ri is the radius of S′

i. If m > 2, let Zi, i = 3, . . . ,m, denote a sphere
of radius (ri + 1) that is concentric with S′

i. Let SF be the locus of centers of
spheres that are tangent to all S′

i. If m = 2, the SF = Z0 and for m > 2, SF
is the intersection of spheres Z0 and Zi, i = 3, . . . ,m.

Note that by assumption SF is not empty. Moreover, since all F-kissing
arrangements are finite, SF is a sphere of radius r > 0.

Since all Cj are unit sphere, the distance between centers of distinct spheres
in P ′ is at least 2. Therefore, if r < 1, then P contains just one sphere. In this
case put for ψF any number greater than π.

Now consider the case when SF is a (d − 1)-sphere of radius r ≥ 1. Let ψF
be the angular distance between centers in SF of two tangent unit spheres in
R

n. In other words, ψF is the angle between equal sides in an isosceles triangle
with side lengths r, r, and 2. We have

ψF := arccos
(

1 − 2
r2

)
.

Let f : SF → UF be the central projection, where UF denotes a unit sphere
that is concentric with SF . Denote cP the set of centers of Cj . Let X := f(cP ).
Then X is a spherical ψF -code in S

d−1.
Let X be any spherical ψF -code in S

d−1 � UF . Then we have a unit sphere
packing QX with centers in cX := f−1(X) such that each sphere from QX is
tangent to all S′

i. It is clear that P := T (QX) is an F-kissing arrangement.
Thus, a one-to-one correspondence ΦF between F-kissing arrangements

and spherical ψF -codes in S
d−1 is well defined. This completes the proof. �

Corollary 2.4. Let F = {S1, . . . , Sm} be an S-family of spheres in R
n. Denote

by cardF the maximum cardinality of F-kissing arrangements. Then

cardF = A(d, ψF ).

In particular, cardF ≥ d + 1 if and only if ψF ≤ arccos(−1/d).

Proof. The equality cardF = A(d, ψF ) immediately follows from Theorem 2.3.
Since ad := arccos(−1/d) is the side length of a regular spherical d-simplex in
S
d−1, we have A(d, ad) = d + 1. Thus, if ψ ≤ ad, then A(d, ψ) ≥ d + 1. �

Theorem 2.3 states a one-to-one correspondence between F-kissing arrange-
ments and spherical codes. We say that two F-kissing arrangements M and N
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are equivalent if the correspondent spherical ψF -codes X and Y are isometric
in S

d−1.

Theorem 2.5. Let F = {S1, . . . , Sm} be an S-family of spheres in R
n. Then

any ψF -code X in S
d−1 uniquely determines the set of equivalent F-kissing

arrangements {PA(X)} such that this set can be parametrized by A ∈ SO(d).
Moreover, for any isometric ψF -codes X and Y in S

d−1 and A,B ∈ SO(d),
PA(X) can be transform to PB(Y ) by a conformal map.

Proof. Here we use the same notations as in the proof of Theorem 2.3.
Denote P = T (QX) by PI , where I is the identity element in SO(d). If

ψF -codes X and Y are isometric in S
d−1, then there is A ∈ SO(d) such that

Y = A(X). Denote T (QA) by PA. We have

PA = hA(PI), hA := T ◦ A ◦ T.

It is clear that hA is a conformal map. �

3. Analogs of Steiner’s porism and Soddy’s hexlet.

3.1. Analogs of Steiner’s porism. Theorem 2.5 can be considered as a gener-
alization of Steiner’s porism. For a given family F and spherical ψF -code X
in S

d−1, there are F-kissing arrangements that are correspondent to X.
However, Steiner’s porism has a stronger property. A Steiner chain is formed

from one starting circle and each circle in the chain is tangent to the previous
and next circles in the chain. If the last circle touches the first, this will also
happen for any position of the first circle. Thus, a position of the first circle
uniquely determines a Steiner chain.

Now we extend this property to higher dimensions. We say that an F-
kissing arrangement C = {C1, . . . , Ck} is a k-clique if all spheres in C are
mutually tangent. We say that a sphere Ck+1 is adjacent to C if Ck+1 is tangent
to all spheres of C and F .

Lemma 3.1. Let F = {S1, . . . , Sm} be an S-family of spheres in R
n with

cardF ≥ d + 1. Then the set of (d − 1)-cliques is not empty and for any
(d − 1)-clique C there are exactly two adjacent spheres.

Proof. Corollary 2.4 yields that ψF ≤ arccos(−1/d). Therefore, a regular
spherical (d − 2)-simplex of side length ψF can be embedded into S

d−1. For
this simplex in S

d−1 there are exactly two possibilities to complete it to regular
spherical (d−1)-simplices. By Theorem 2.3 these two new vertices correspond
to two adjacent spheres. �

Now we define a Steiner arrangement for all dimensions. First we define a
tight F-kissing arrangement, where F is an S-family of spheres in R

n. Let C0

be any (d − 1)-clique. By Lemma 3.1 there are two adjacent spheres for C0.
Let C1 be one of them. Then C1 := C0 ∪ C1 is a d-clique of tangent spheres.
Suppose that after k steps we have an F-kissing arrangement Ck. We can do
the next step only if in Ck there are a (d − 1)-clique and its adjacent sphere
Ck+1 such that Ck+1 := Ck ∪ Ck+1 is an F-kissing arrangement. Denote by t
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the maximum number of possible steps. It is clear, t ≤ cardF . We call Ct a
tight F-kissing arrangement.

Note that for d = 2 a tight chain Ct is Steiner if the first circle of the chain
touches the last one. It can be extended for all dimensions. We say that a tight
F-kissing arrangement Ct is Steiner if Ct contains all adjacent spheres of all its
(d − 1)-cliques. Equivalently, an F-Steiner arrangement can be define in the
following way.

Definition 3.2. Let F = {S1, . . . , Sm} be an S-family of spheres in R
n with

cardF ≥ d+1. We say that an F-kissing arrangement C is Steiner if it contains
a (d − 1)-clique and for all (d − 1)-cliques in C their adjacent spheres also lie
in C.

Recall that a simplicial polytope is a polytope whose facets are all simplices.

Definition 3.3. Let F = {S1, . . . , Sm} be an S-family of spheres in R
n. An

F-kissing arrangement is called (d − 1)-simplicial if the convex hull of the
correspondent spherical code in S

d−1 is a (d − 1)-simplicial regular polytope.
We denote this polytope by PF .

Lemma 3.4. Let F = {S1, . . . , Sm} be an S-family of spheres in R
n with

cardF ≥ d+1. An F-kissing arrangement is Steiner if and only if it is (d−1)-
simplicial.

Proof. Clearly, if an F-kissing arrangement C is simplicial, then it is Steiner.
Suppose C is Steiner. Then the convex hull P of the correspondent spherical
ψF -code ΦF (C) (see Theorem 2.3) is a polytope that has a (d − 2)-face P0

which is a regular (d − 2)-simplex of side length ψF . By Lemma 3.1, P0 has
two adjacent points v0 and v1 in S

d−1. Moreover, by Definition 3.2, these two
points are vertices of P . Therefore all vertices of a bipyramid P1 := v0∪P0∪v1
are vertices of P . It is clear that all faces of P1 are regular (d − 2)-simplices,
i.e. they are (d − 2)-cliques in C. It yields that P1 a sub-polytope of P . Next,
we add all new adjacent vertices to (d − 2)-faces of P1. We denote this sub-
polytope of P by P2. We can continue this process and define new Pi. It is
easy to see that after finitely many steps we obtain Pk = P .

Note that for i > 0 any Pi consists of regular (d−1)-simplices of side length
ψF . Then all faces of P are regular simplices. Since P is a spherical polytope,
we have that P is regular. �
Theorem 3.5. Let F = {S1, . . . , Sm} be an S-family of spheres in R

n. If for F
there exists a Steiner arrangement, then we have one of the following cases

1. d = 2, ψF = 2π/k, k ≥ 3, and PF is a regular polygon with k vertices.
2. ψF = arccos(−1/d) and PF is a regular d-simplex with any d ≥ 2.
3. ψF = π/2 and PF is a regular d-crosspolytope with any d ≥ 2.
4. d = 3, ψF = arccos(1/

√
5), and PF is a regular icosahedron.

5. d = 4, ψF = π/5, and PF is a regular 600-cell.

Proof. Lemma 3.4 reduces a classification of Steiner arrangements to an enu-
meration of simplicial regular polytopes. The list of these polytopes is well
known, see [6], and it is as in the theorem. �
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In particular, Theorem 3.5 shows that for any of these five cases all tight F-
kissing arrangements are equivalent. The following corollary is a generalization
of Steiner’s porism.

Corollary 3.6. Let F be an S-family of spheres in R
n. If there is an F-Steiner

arrangement, then any tight F-kissing arrangement is Steiner.

3.2. Analogs of Soddy’s hexlet. Soddy [11] proved that for any family F of
three mutually tangent spheres in R

3 there is a chain of six spheres (hexlet)
such that each sphere from this chain is tangent all spheres from F . Now we
extend this theorem to higher dimensions.

Let m ≥ 2. Denote

ψm := arccos
(

1
m − 1

)
.

Theorem 3.7. Let 3 ≤ m < n+2. Let X be a spherical ψm-code in S
d−1, where

d := n + 2 − m. Then for any family F of m mutually tangent spheres in R
n,

there is an F-kissing arrangement that corresponds to X.

Proof. Here we use the same notations as in the proof of Theorem 2.3.
This theorem follows from Theorem 2.3 using the fact that ψF = ψm.

Indeed, we have case (i), and therefore S′
1 and S′

2 are two parallel hyperplanes.
Since the spheres in F are mutually tangent, we have that all S′

i, i = 3, . . . ,m,
are unit spheres. It is not hard to prove that SF is the intersection of (m − 2)
spheres of radius 2 centered at points C = {c3, . . . , cm} in R

n−1 such that if
m > 3, then dist(ci, cj) = 2 for all distinct ci and cj from C. Then

r =

√
2m − 2
m − 2

and 1 − 2
r2

=
1

m − 1
.

It proves the equality ψF = ψm. �

Let F be a family of m mutually tangent spheres in R
n. Denote

S(n,m) := cardF .

Corollary 2.4 and Theorem 3.7 imply

Corollary 3.8. S(n,m) = A(n + 2 − m,ψm). In particular, S(n, 3) = k(n − 1).

Examples.

1. If m = n+1, then ψm = π. It implies that S(n, n+1) = 2. Actually, this
fact can be proved directly, there are just two spheres that are tangent
to n + 1 mutually tangent spheres in R

n.
2. Now consider a classical case m = n = 3. We have

S(3, 3) = A(2, π/3) = k(2) = 6.

Then a maximum π/3-code in S
1 is a regular hexagon. The corresponding

F-sphere arrangement is a Soddy’s hexlet.
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3. Let m = 3 and X be a spherical code of maximum cardinality |X| = k(d),
where d := n−1. Then X is a kissing arrangement (maximum π/3-code)
in S

d−1. Note that the kissing number problem has been solved only for
n ≤ 4, n = 8, and n = 24 (see [2,5,8]). However, in several dimensions
many nice kissing arrangements are known, for instance, in dimensions 8
and 24 [5].
If n = 4, i.e. d = 3, then k(d) = 12. In this dimension there are infinitely
many non-isometric kissing arrangements. We think that the cuboctahe-
dron with 12 vertices representing the positions of 12 neighboring spheres
can be a good analog of Soddy’s hexlet in four dimensions.
In four dimensions the kissing number is 24 and the best known kiss-
ing arrangement is a regular 24-cell [8]. (However, the conjecture about
uniqueness of this kissing arrangement is still open.) So in dimension five
a nice analog of Soddy’s hexlet is the 24-cell.

4. By Theorem 3.7 for F-kissing arrangements correspondent spherical codes
have to have the inner product = 1/(m−1). The book [5] contains a large
list of such spherical codes. Moreover, some of them are universally op-
timal [4, Table 1]. All these examples give analogs of Soddy’s hexlet in
higher dimensions.

5. Hao Chen [3, Sect. 3] considers sphere packings for some graph joins. [3,
Table 1] contains a large list of spherical codes that give generalizations
of Soddy’s hexlet.

Acknowledgements. I wish to thank Arseniy Akopyan and Alexey Glazyrin
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